The language A_{TM}

- Consider the language:

 $$A_{TM} = \{<M,w> \mid M \text{ is a TM and } M \text{ accepts } w\}$$

- NOTE: $<A,B,...>$ is just a string encoding the objects A, B, ...

- In particular, $<M,w>$ is a string listing the components of TM M followed by the string w

- Given input $<M,w>$, it should be easy to extract the info about M and to simulate M on w (try writing a TM to do this!)

- What can we say about A_{TM}?

Is A_{TM} Turing-recognizable?
\(A_{TM} \) is Turing-recognizable

- \(A_{TM} \) is Turing-recognizable: Recognizer TM \(U \) for \(A_{TM} \):

 On input string \(<M,w> \):

 Simulate \(M \) on \(w \).

 ACCEPT \(<M,w> \) if \(M \) halts & accepts \(w \)

 REJECT \(<M,w> \) if \(M \) halts & rejects

 (Loop (& thus reject \(<M,w> \)) if \(M \) ends up looping).

 \(U \) accepts \(<M,w> \) iff \(M \) accepts \(w \), i.e. \(L(U) = A_{TM} \)

“Universal” TM
(can simulate any TM)

Yeah, but is it decidable?!!
Is A_{TM} decidable?

- $A_{TM} = \{<M,w> \mid M \text{ is a TM and } M \text{ accepts } w\}$
- Let’s assume A_{TM} is decidable and see where it leads us
- A_{TM} is decidable \Rightarrow there’s a decider H, $L(H) = A_{TM}$
 - H on $<M,w> = \text{ACC}$ if M accepts w
 - REJ if M rejects w (by halting in q_{REJ} or looping)
- Then, we can construct a new TM D as follows:
 On input $<M>$:
 - Extract M from $<M>$
 - Simulate H on $<M,<M>>$ (here, $w = <M>$)
 - If H accepts $<M,<M>>$, then REJECT input $<M>$
 - If H rejects $<M,<M>>$, then ACCEPT input $<M>$
Is A_{TM} decidable?

- **New TM D works as follows:**

 On input $<M>$:

 Extract M from $<M>$

 Simulate H on $<M,<M>>$ (here, $w = <M>$)

 If H accepts $<M,<M>>$, then REJECT input $<M>$

 If H rejects $<M,<M>>$, then ACCEPT input $<M>$

- **What happens when D gets $<D>$ as input?**

 If D rejects $<D> \Rightarrow H$ accepts $<D,<D>> \Rightarrow D$ accepts $<D>$

 If D accepts $<D> \Rightarrow H$ rejects $<D,<D>> \Rightarrow D$ rejects $<D>$

 Either way: **Contradiction!** D cannot exist $\Rightarrow H$ cannot exist

 Therefore, A_{TM} is not a decidable language.
Undecidability Proof uses Diagonalization

Input strings

<table>
<thead>
<tr>
<th>List of TMs</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td><M_1></td>
<td>ACC</td>
<td>REJ</td>
<td>\textit{loop}</td>
<td>...</td>
</tr>
<tr>
<td><M_2></td>
<td>REJ</td>
<td>\textit{loop}</td>
<td>ACC</td>
<td>...</td>
</tr>
<tr>
<td><M_3></td>
<td>ACC</td>
<td>ACC</td>
<td>REJ</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\text{Input strings} & <M_1> & <M_2> & <M_3> & ... & <D> \\
\hline
\text{List of TMs} & M_1 & M_2 & M_3 & ... & D \\
\hline
\text{ACC} & ACC & REJ & REJ & ... & ACC \\
\hline
\text{REJ} & REJ & ACC & ACC & ... & ACC \\
\hline
\text{ACC} & ACC & REJ & REJ & ... & REJ \\
\hline
\text{REJ} & ACC & ACC & ... & ?? \\
\end{array}\]

If H exists

D outputs opposite of diagonal

D on <M_i> accepts if and only if M_i on <M_i> rejects.
So, D on <D> will accept if and only if D on <D> rejects!
A contradiction \(\Rightarrow\) H cannot exist!
Therefore, \(A_{TM}\) is not a decidable language.
One Last Concept: Reducibility

- How do we show a new problem B is undecidable?
 - Idea: Show that a known undecidable problem (e.g., A_{TM}) is reducible to the new problem B
 ➔ What does this mean and how do we show this?
 - Show that if B was decidable, then you can use the decider for B as a subroutine to decide A_{TM}
 ➔ Contradiction, therefore B must also be undecidable
The Halting Problem is Undecidable (Turing, 1936)

- **Halting Problem**: Does TM M halt on input w?
 - Equivalent language:

 \[\text{HALT} = \{ <M,w> \mid \text{TM M halts on input w} \} \]

 Need to show \(\text{HALT} \) is undecidable
 - Use the fact that \(A_{TM} = \{ <M,w> \mid \text{TM M accepts w} \} \)
 is known to be undecidable
The Halting Problem is Undecidable (cont.)

Show A_{TM} is reducible to HALT (Theorem 5.1 in text)

- Suppose HALT is decidable \Rightarrow there’s a decider M_{HALT} for HALT
- Then, we can use M_{HALT} to solve A_{TM}
- Define decider D_{TM} as:

 On input $<M,w>$, first run M_{HALT} on $<M,w>$.

 • If M_{HALT} rejects, then REJ (this takes care of M looping on w)

 • If M_{HALT} accepts, then simulate M on w until M halts

 • If M accepts, then ACC input $<M,w>$; else REJ

Then, $L(D_{TM}) = A_{TM} \Rightarrow A_{TM}$ is decidable!

Contradiction. Therefore, HALT is undecidable.

- E.g. 2: Show $E_{TM} = \{<M> | M$ is a TM and $L(M) = \emptyset\}$ is undecidable
Last homework (#7) on class website today
 (due on Friday, last day of class)

 Take-Home Final on website on Friday June 4
 (due by 4:30pm Monday, June 7)

 No class this monday – UW holiday

 Enjoy the long weekend!