We know $L = \{0^n1^n0^n \mid n \geq 0\}$ is not a CFL (pumping lemma)

Can we show L is decidable?

- Construct a decider M such that $L(M) = L$
- A **decider** is a TM that always halts (in q_{acc} or q_{rej}) and is guaranteed not to go into an infinite loop for any input

Input: 000001111100000

Idea: Mark off matching 0s, 1s, and 0s with Xs (left end marked with blank)

<table>
<thead>
<tr>
<th>Input</th>
<th>000001111100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked</td>
<td>000001111100000</td>
</tr>
<tr>
<td>0s, 1s, Xs</td>
<td>_00001111100000</td>
</tr>
<tr>
<td>0s</td>
<td>_0000X111100000</td>
</tr>
<tr>
<td>Xs</td>
<td>_0000X1111X0000</td>
</tr>
<tr>
<td>Blank</td>
<td>_X000X1111X0000</td>
</tr>
</tbody>
</table>

....
Idea for a Decider for \(\{0^n1^n0^n \mid n \geq 0\} \)

- **General Idea**: Match each 0 with a 1 and a 0 following the 1.
- **Implementation Level Description** of a Decider for L:

 On input w:
 1. If first symbol = blank, ACCEPT
 2. If first symbol = 1, REJECT
 3. If first symbol = 0, Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
 4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT
State Diagram

Try running the decider on:

⇒ 010, 001100, … ⇒ ACCEPT
⇒ 0, 000, 0100, … ⇒ REJECT
⇒ What about 010010?

Note: Some transitions to q_{REJ} (e.g., from q_{skip0}) are not shown to avoid clutter

R. Rao, CSE 322
Houston, we have a problem…with our Turing machine.
What’s the problem?

The decider accepts incorrect strings:

- 010010, 010001100 \(\rightarrow\) ACCEPT!!!
- Accepts \((0^n1^n0^n)^*\)

Need to fix it…How??
A Simple Fix (to the Decider)

Scan initially to make sure string is of the form 0*1*0*

On input w:
1. If first symbol = blank, ACCEPT
2. If first symbol = 1, REJECT
3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,
 Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT

Add this
The Decider TM for L in all its glory

New part tests for 00*11*00*
Can we augment the power of Turing machines with various accessories?
Varieties of TMs

- What if we allow nondeterminism?
- What if we allow multiple tapes?
- What if my date doesn’t show up tonight?
Various Types of TMs

- **Multi-Tape TMs**: TM with k tapes and k heads
 \[\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]
 \[\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, L, R, \ldots, L) \]

- **Nondeterministic TMs (NTMs)**
 \[\delta: Q \times \Gamma \rightarrow \text{Pow}(Q \times \Gamma \times \{L,R\}) \]
 \[\delta(q_i, a) = \{(q_1, b, R), (q_2, c, L), \ldots, (q_m, d, R)\} \]

- **Enumerator TM for L**: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L

- **Other types**: TM with Two-way infinite tape, TM with multiple heads on a single tape, 2D infinite tape TM, Random Access Memory (RAM) TM, etc.
Surprise!
All TMs are born equal…

- Each of the preceding TMs is equivalent to the standard TM
 - They recognize the same set of languages (the Turing-recognizable languages)

- Proof idea: Simulate the “deviant” TM using a standard TM

- **Example 1: Multi-tape TM on a standard TM**
 - Represent k tapes sequentially on 1 tape using separators #
 - Use new symbol a to denote a head currently on symbol a

```
0 1 ............
```
```
b a h ............
```
```
3 2 2 ............
```

≡
```
# 0 1 # b a h # 3 2 2 # ........
```

(See text for details)
Example 2: Simulating Nondeterminism

Any nondeterministic TM N can be simulated by a deterministic TM M

- NTMs: $\delta: Q \times \Gamma \rightarrow \text{Pow}(Q \times \Gamma \times \{L,R\})$
- No ε transitions but can simulate them by reading and writing same symbol
- N accepts w iff there is at least 1 path in N’s tree for w ending in q_{ACC}

General proof idea: Simulate each branch sequentially

- Proof idea 1: Use depth first search?
 No, might go deep into an infinite branch and never explore other branches!
- Proof idea 2: Use breadth first search
 Explore all branches at depth n before $n+1$
Simulating Nondeterminism: Details, Details

- Use a 3-tape DTM M for breadth-first traversal of N’s tree on w:
 - Tape 1 keeps the input string w
 - Tape 2 stores N’s tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
 - Tape 3 stores current path number
 E.g. $\varepsilon = \text{root node } q_0$
 $213 = \text{path made up of 3rd child of 1st child of 2nd child of root}$

- See text for more details
What about other types of computing machines?

- Enumerator TMs (or Printer Machines)
- TMs with 2-Way Infinite Tape
- TMs with Multiple Read/Write Heads
- TMs with 2-Dimensional Tape
- TMs with Random Access Memory (RAM)
The Church-Turing Thesis

- Various definitions of “algorithms” were shown to be equivalent in the 1930s
- **Church-Turing Thesis**: “The intuitive notion of algorithms equals Turing machine algorithms”
 - Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- “Any computation on a digital computer is equivalent to computation in a Turing machine”

Dude, that’s pretty deep…
Recap: Recognizable versus Decidable Languages

- A language \(L \) is called **Turing-Recognizable** if there exists a TM \(M \) such that \(L(M) = L \)
 - Note: \(M \) need not halt on all inputs but it should halt and accept all and only those strings that are in \(L \); it can reject strings by either going to \(q_{\text{rej}} \) or by looping forever

- A TM is a **decider** if it halts on all inputs

- A language \(L \) is **decidable** if there exists a decider \(D \) such that \(L(D) = L \)
Closure Properties of Decidable Languages

✨ Decidable languages are closed under ∪, °, *, ∩, and complement

✨ Example: Closure under ∪

✨ Need to show that union of 2 decidable L’s is also decidable
 Let M1 be a decider for L1 and M2 a decider for L2
 A decider M for L1 ∪ L2:
 On input w:
 1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
 2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.
 M accepts w iff M1 accepts w OR M2 accepts w
 i.e. L(M) = L1 ∪ L2
Closure Properties

- Consider the proof for closure under \cup
 A decider M for $L_1 \cup L_2$:
 On input w:
 1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)
 2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.
 M accepts w iff M_1 accepts w OR M_2 accepts w
 i.e. $L(M) = L_1 \cup L_2$

Will the same proof work for showing Turing-recognizable languages are closed under \cup? Why/Why not?

Uh…I dunno. Wait, will M_1 always halt?!

M1 may never halt but w may be in L_2
Closure Properties of Recognizable Languages

- Turing recognizable languages are closed under ∪

 A TM M for L1 ∪ L2:

 On input w:

 Simulate M1 and M2 *alternatively* on w *step by step*.

 If either accepts, then ACCEPT w.

 If both halt and reject w, then REJECT w.

L(M) = L1 ∪ L2

If either M1 or M2 accepts, then M accepts w (even if one of them loops, M will accept and halt when the other accepts and halts because M alternates between M1 and M2).

Otherwise, M rejects w by halting or by looping forever.
Closure for Recognizable Languages

- Turing-Recognizable languages are closed under \cup, \circ, $*$, and \cap (but not complement! We will see this later)

- Example: **Closure under \cap**
 Let M_1 be a TM for L_1 and M_2 a TM for L_2 (both may loop)
 A TM M for $L_1 \cap L_2$:
 - On input w:
 1. Simulate M_1 on w. If M_1 halts and accepts w, go to step 2. If M_1 halts and rejects w, then REJECT w. (If M_1 loops, then M will also loop and thus reject w)
 2. Simulate M_2 on w. If M_2 halts and accepts, ACCEPT w. If M_2 halts and rejects, then REJECT w. (If M_2 loops, then M will also loop and thus reject w)
 - M accepts w iff M_1 accepts w AND M_2 accepts w i.e. $L(M) = L_1 \cap L_2$