Pumping Lemma for CFLs

- Intuition: If L is CF, then some CFG G produces strings in L
 - If some string in L is very long, it will have a very tall parse tree
 - If a parse tree is taller than the number of distinct variables in G, then some variable A repeats \(\Rightarrow \) A will have at least two sub-trees
 - We can pump up the original string by replacing A’s smaller sub-tree with larger, and pump down by replacing larger with smaller

- Pumping Lemma for CFLs in all its glory:
 - If L is a CFL, then there is a number p (the “pumping length”) such that for all strings \(s \) in L such that \(|s| \geq p \), there exist \(u, v, x, y, \) and \(z \) such that

\[
s = uvxyz \quad \text{and:}
\]

1. \(uv^i xy^i z \in L \) for all \(i \geq 0 \), and
2. \(|vy| \geq 1 \), and
3. \(|vxy| \leq p \).
Why is the PL useful?

- Can use the pumping lemma to show a language L is not \(\text{context-free} \)

⇒ 5 steps for a proof by contradiction:
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping lemma for CFLs.
3. Choose cleverly an s in L of length at least p, such that
4. For all possible ways of decomposing s into $uvxyz$, where $|vy| \geq 1$ and $|vxy| \leq p$,
5. Choose an $i \geq 0$ such that uv^ixy^iz is not in L.

Yawn…yes, why indeed?
Example 1

Show that \(L = \{0^n1^n0^n \mid n \geq 0\} \) is not a CFL

1. Assume \(L \) is a CFL.
2. Let \(p \) be the pumping length for \(L \) given by the pumping lemma for CFLs.
3. Let \(s = 0^p1^p0^p \) (note that \(|s| > p|\)
4. For all possible ways of decomposing \(s = 0^p1^p0^p \) into \(uvxyz \), where \(|vy| \geq 1 \) and \(|vxy| \leq p|\)
5. We need \(i \geq 0 \) such that \(uv^ixy^iz \) is not in \(L \):
 Case 1: Both \(v \) and \(y \) contain only 0s or only 1s
 \(\Rightarrow \) Then \(uv^2xy^2z \) contains unequal no. of 0s, 1s, and 0s.
 Case 2: \(v \) or \(y \) contain both 0 and 1
 \(\Rightarrow \) Then \(uv^2xy^2z \) is not of the form \(0^*1^*0^* \).
In both cases, \(uv^2xy^2z \) is not in \(L \), contradicting pumping lemma. Therefore \(L \) cannot be a CFL.
Example 2

Show $L = \{0^n \mid n \text{ is a prime number}\}$ is not a CFL
1. Assume L is a CFL.
2. Let p be the pumping length for L given by the pumping lemma for CFLs.
3. Let $s = 0^n$ where n is a prime $\geq p$
4. Consider *all possible ways* of decomposing s into $uvxyz$, where $|vy| \geq 1$ and $|vxy| \leq p$.
 Then, $vy = 0^r$ and $uxz = 0^q$ where $r + q = n$ and $r \geq 1$
5. We need an $i \geq 0$ such that $uv^i xy^i z = 0^{ir+q}$ is not in L.
 ($i = 0$ won’t work because q could be prime: e.g. $2 + 17 = 19$)
 Choose $i = (q + 2 + 2r)$. Then, $ir + q = qr + 2r + 2r^2 + q = q(r+1) + 2r(r+1) = (q+2r)(r+1) = \text{not prime (since } r \geq 1)$.
 So, 0^{ir+q} is not in $L \Rightarrow$ contradicts pumping lemma. L is not a CFL.
Closure properties of CFLs

- You showed in homework that CFLs are closed under union, concatenation and star.

- How about intersection?
- How about complement?
Two surprising results about CFLs

- CFLs are not closed under intersection
 - **Proof:** $L_1 = \{0^n1^n0^m \mid n, m \geq 0\}$ and $L_2 = \{0^m1^n0^n \mid n, m \geq 0\}$ are both CFLs but $L_1 \cap L_2 = \{0^n1^n0^n \mid n \geq 0\}$ is not a CFL.

- CFLs are not closed under complement
 - **Proof by contradiction:**
 Suppose CFLs are closed under complement.

 Then, for L_1, L_2 above, $\overline{L_1 \cup L_2}$ must be a CFL (since CFLs are closed under \cup - see this week’s homework).

 But, $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$ (by de Morgan’s law).
 $L_1 \cap L_2 = \{0^n1^n0^n \mid n \geq 0\}$ is not a CFL \Rightarrow contradiction.
 Therefore CFLs are not closed under complement.
Can we make PDAs more powerful?

PDA = NFA +

What if we allow arbitrary reads/writes to the stack instead of only push and pop?
Enter…the Turing Machine
Turing Machines

Just like a DFA except:

- You have an infinite “tape” memory (or scratchpad) on which you receive your input and on which you can do your calculations
- You can read one symbol at a time from a cell on the tape, write one symbol, then move the read/write pointer (head) left (L) or right (R)
Who was Turing?

- Alan Turing (1912-1954): one of the most brilliant mathematicians of the 20th century (one of the “founding fathers” of computing)
- Click on “Theory Hall of Fame” link on class web under “Lectures”
- Introduced the Turing machine as a formal model of what it means to compute and solve a problem (i.e. an “algorithm”)

How do Turing Machines compute?

- \(\delta(\text{current state, symbol under the head}) = (\text{next state, symbol to write over current symbol, direction of head movement}) \)

Diagram shows: \(\delta(q_1,1) = (q_{\text{rej}}, 0, L) \)
(R = right, L = left)

In terms of “Configurations”: \(110q_110 \Rightarrow 11q_{\text{rej}}000 \)
Next Time: Turing-Recognizable versus Decidable Languages

How does a TM accept a string?

How can a TM reject a string?

What is a decider TM?