1. (20 points) Give examples of each of the following if possible. If not possible, explain why.
 a. Two countably infinite sets A and B such that A is a proper subset of B
 b. Two countably infinite sets whose cross product is uncountably infinite
 c. Two uncountably infinite sets whose intersection is finite
 d. Two uncountably infinite sets A and B such that (A-B) is uncountably infinite

2. (10 points) You are in the restroom of your local theatre that is playing the new disaster movie (or disaster of a movie) starring Ben Affleck. The restroom contains 6 stalls in a row. If 4 of these stalls are empty, prove that there is at least one empty stall that has another empty stall next to it. (Hint: Use the pigeonhole principle.)

3. (20 points) Consider the set \(\Sigma^* \) for \(\Sigma = \{0,1\} \).
 a. Prove that \(\Sigma^* \) is countably infinite.
 b. At the annual CSE 322 theorem-proving cocktail party, a party crasher announces the following “proof” by diagonalization that \(\Sigma^* \) is in fact uncountable. What is wrong with this “proof”?
 “Proof: By Contradiction. Suppose \(\Sigma^* \) is countably infinite. Then, there exists a bijection \(f: \mathbb{N} \rightarrow \Sigma^* \). We can create a new string \(s \) as follows:
 \(i \)th symbol of \(s \) =
 0 if the \(i \)th symbol of \(f(i) \) is 1
 1 if the \(i \)th symbol of \(f(i) \) is 0
 1 if length of \(f(i) \) < \(i \) (i.e. \(i \)th symbol does not exist)
 Then, \(s \) differs from all the strings given by the function \(f \). Since \(s \) is a binary string that is not among the outputs of \(f \), this contradicts the fact that \(f \) is a bijection. Therefore, \(\Sigma^* \) is uncountable.”

4. (50 points) Draw state diagrams of (deterministic) finite automata that recognize the following languages. In all cases, the alphabet is \{0,1\}.
 a. \{w | w begins with 1 and ends in 0\}
 b. \{w | number of 1’s in w is divisible by 3\}
 c. \{w | the third symbol of w is 1 and w has odd length\}
 d. \{w | each 1 in w is immediately preceded by a 0\}
 e. \{w | w contains an odd number of 0s and at least two 1s\}
 f. \{w | w contains a single 00 and a single 11\}
 g. \{w | w contains at least two 0s and at most four 1s\}
 h. \{w | w does not contain 101 or 111\}
 i. the set \{\varepsilon\}
 j. the empty set