Notes for Wednesday, June 2nd

Recall: \(A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \). \(A_{TM} \) is Turing-recognizable (via Universal TM) but not decidable (via diagonalization technique).

Now we ask the question: is there a language that is not even Turing-recognizable.

Suppose \(A_{TM} \) is also Turing-recognizable.

Theorem: \(L \) is decidable iff \(L \) and \(\overline{L} \) are Turing recognizable

Proof:

\((\Rightarrow)\) All decidable languages are Turing-recognizable, so \(L \) is Turing-recognizable. If \(L \) is decidable, that automatically implies that \(L \) is Turing-recognizable. If \(L \) is decidable, \(\overline{L} \) is also decidable (decidable languages are closed under complement), so \(\overline{L} \) is also Turing-recognizable.

\((\Leftarrow)\) If \(L \) and \(\overline{L} \) are Turing-recognizable, then there exist \(M_1 \) and \(M_2 \) such that \(L(M_1) = L \) and \(L(M_2) = \overline{L} \). We can construct a decider TM for \(L \):

“on input \(\langle M, w \rangle \):
run \(M_1 \) and \(M_2 \) on \(w \) by alternating one step at a time
If \(M_1 \) accepts, \(M \) accepts
If \(M_2 \) accepts, \(M \) rejects”

This way, \(M \) is guaranteed to halt on all inputs (because the string is either in \(L \) or \(\overline{L} \), and because \(M_1 \) and \(M_2 \) are run in parallel, it doesn’t matter if one of them goes into an infinite loop). Thus, \(L \) is decidable.

Corollary: \(\overline{A_{TM}} \) is not Turing-recognizable.

(If it were, \(A_{TM} \) itself would be decidable by the theorem, which is a contradiction)

This is the Chomsky hierarchy of problems:

\[
\begin{align*}
\text{TURING-REC (} A_{TM} \text{)} \\
\text{DECIDABLE (} 0^n1^n0^n \text{)} \\
\text{CFL (} 0^n1^n \text{)} \\
\text{REG (} 0^*1^* \text{)}
\end{align*}
\]

\(\overline{A_{TM}} \) is undecidable; are there more such problems?

Suppose you want to show that \(B \) is undecidable, and you know that \(A \) is undecidable. If you can use \(B \) to solve \(A \) (\(B \) is a decider for \(A \)), then \(A \) is decidable and this is a contradiction.

In this way, you can reduce an undecidable problem \(A \) to another problem \(B \). If \(B \) is decidable, then there is a contradiction.

The notion is to use the new problem \(B \) to solve the original problem \(A \)

Notation: \(A \) is reducible to \(B \) if you can use \(B \) to solve \(A \). We write \(A \leq B \).

Suppose \(B \leq C \), and \(C \leq D \). Then we can write \(A \leq B \leq C \leq D \).

Let \(E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \).

Theorem: \(A_{TM} \leq E_{TM} \) (this \(E_{TM} \) is undecidable, by reduction)

Proof: Assume \(E_{TM} \) is decidable. Then, there exists a decider TM \(M_E \) such that \(L(M_E) = E_{TM} \).

Construct a decided for \(A_{TM} \) as follows:

\(\text{on input } \langle M, w \rangle, \)
1. Build TM M_1 on input x:

 (a) If $x \neq w$, reject
 (b) If $x = w$, then simulate M on w, accept if M accepts

 (then $L(M_1) = \{\{w\} \text{ if } M \text{ accepts } w, \emptyset \text{ otherwise}\}$)

2. Feed M_1 to M_E

3. Accept $\langle M, w \rangle$ if M_E rejects $\langle M_1 \rangle$; Reject $\langle M, w \rangle$ if M_E accepts $\langle M_2 \rangle$.

This is a contradiction, so E_{TM} is undecidable.