CSE 322

Exam Reviews
Basic Concepts

- **Formal Languages**
 - Alphabet (Σ)
 - String (Σ^*)
 - Length ($|x|$)
 - Empty String (ε)
 - Empty Language (\emptyset)

- **Language/String Operations**
 - “Regular” Operations:
 - Union (\cup)
 - Concatenation (\cdot)
 - (Kleene) Star ($*$)
 - Other:
 - Intersection
 - Complement
 - Reversal
 - Shuffle
 - ...
Finite Defns of Infinite Languages

<table>
<thead>
<tr>
<th>Finite Defns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, mathematical</td>
<td></td>
</tr>
<tr>
<td>DFAs</td>
<td>States</td>
</tr>
<tr>
<td></td>
<td>Start states</td>
</tr>
<tr>
<td></td>
<td>Accept states</td>
</tr>
<tr>
<td></td>
<td>Transitions (δ function)</td>
</tr>
<tr>
<td></td>
<td>M accepts $w \in \Sigma^*$</td>
</tr>
<tr>
<td></td>
<td>M recognizes $L \subseteq \Sigma^*$</td>
</tr>
<tr>
<td>Nondeterminism</td>
<td>Transitions (δ relation)</td>
</tr>
<tr>
<td></td>
<td>Missing out-edges</td>
</tr>
<tr>
<td></td>
<td>Multiple out-edges</td>
</tr>
<tr>
<td></td>
<td>ε-moves</td>
</tr>
<tr>
<td></td>
<td>N accepts $w \in \Sigma^*$</td>
</tr>
<tr>
<td></td>
<td>N recognizes $L \subseteq \Sigma^*$</td>
</tr>
<tr>
<td>Regular Expressions</td>
<td>\emptyset, ε, $a \in \Sigma$, \cup, \cdot, \ast, $()$</td>
</tr>
<tr>
<td>GNFAs</td>
<td></td>
</tr>
</tbody>
</table>
Key Results, Constructions, Methods

• L is regular iff it is:
 – Recognized by a DFA
 – Recognized by a NFA
 – Recognized by a GNFA
 – Defined by a Regular Expr

Proofs:

<table>
<thead>
<tr>
<th>GNFA</th>
<th>→ Reg Expr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Kleene/Floyd/Warshall: $R_{ik} R_{kk}^* R_{kj}$)</td>
</tr>
</tbody>
</table>

Reg Expr → NFA

(Join NFAs w/ ε-moves)

NFA → DFA

(subset construction)

DFA → GNFA

(special case)

• The class of regular languages is closed under:
 – Regular ops: union, concatenation, star
 – Also: intersection, complementation,
 (& reversal, prefix, no-prefix, …)

• NOT closed under \subseteq, \supseteq

• Also: Cross-product construction (union, …)
Applications

- “globbing”
 - lpr *.txt
- pattern-match searching:
 - grep “Ruzzo.*terrific” *.txt

- Compilers:
 - Id ::= letter (letter|digit)*
 - Int ::= digit digit*
 - Float ::=
 d d* . d* (ε | E d d*)
 - (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)
- Finite state models of circuits, control systems, network protocols, API’s, etc., etc.
Non-Regular Languages

- Key idea: once M is in some state q, it doesn’t remember how it got there.
 - E.g. “hybrids”: if $xy \in L(M)$ and x, x' both go to q, then $x'y \in L(M)$ too.
 - E.g. “loops”: if $xyz \in L(M)$ and x, xy both go to q, then $xy^iz \in L(M)$ for all $i \geq 0$.

- Cor: Pumping Lemma
- Important examples:
 - $L_1 = \{ a^n b^n \mid n > 0 \}$
 - $L_2 = \{ w \mid #_a(w) = #_b(w) \}$
 - $L_3 = \{ ww \mid w \in \Sigma^* \}$
 - $L_4 = \{ ww^R \mid w \in \Sigma^* \}$
 - $L_5 = \{ \text{balanced parens} \}$

- Also: closure under \cap, complementation sometimes useful:
 - $L_1 = L_2 \cap a^* b^*$

- PS: don’t say “Irregular”
Context-Free Grammars

- Terminals, Variables/Non-Terminals
- Start Symbol S
- Rules \rightarrow
- Derivations $\Rightarrow, \Rightarrow^*$
- Left/right-most derivations
- Derivation trees/parsing trees
- Ambiguity, Inherent ambiguity

- A key feature: recursion/nesting/matching, e.g.

 \[S \rightarrow (S)S | \varepsilon \]
Pushdown Automata

- States, Start state, Final states, stack
- Terminals (Σ), Stack alphabet (Γ)
- Configurations, Moves, \vdash, \vdash^*, push/pop
Main Results

• Every regular language is a CFL
• Closure: union, dot, *, (Reversal; ∩ w/ Reg)
• Non-Closure: Intersection, complementation
• Equivalence of CFG & PDA
 – CFG ⊆ PDA :
 top-down(match/expand), bottom-up (shift/reduce)
 – PDA ⊆ CFG: A_{pq}
• Pumping Lemma & non-CFL’s
• Deterministic PDA != Nondeterministic PDA
Important Examples

• Some Context-Free Languages:
 – \{ a^n b^n \mid n > 0 \}
 – \{ w \mid \#_a(w) = \#_b(w) \}
 – \{ w w^R \mid w \in \{a,b\}^* \}
 – balanced parentheses
 – "C", Java, etc.

• Some Non-Context-Free Languages:
 \begin{align*}
 &\{ a^n b^n c^n \mid n > 0 \} \\
 &\{ w \mid \#_a(w) = \#_b(w) = \#_c(w) \} \\
 &\{ w w \mid w \in \{a,b\}^* \}
 \end{align*}

Curiously, their complements are CFL’s
Applications

- Programming languages and compilers
- Parsing other complex input languages
 - html, sql, …
- Natural language processing/
 Computational linguistics
 - Requires handling ambiguous grammars
- Computational biology (RNA)
Turing Machines & Decidability

• TMs
 – States, Σ, δ, etc.
 – 2-way, ∞, writable tape
 – q_{acc}, q_{rej}; both halt
 – Recognizer: halt for “yes”, but may reject by looping
 – Decider: always halts, yes/no answer

• Church-Turing Thesis:
 this is as good a computer as any, wrt what is computable

• There are (many) problems that are not computable
 – About TMs: E.g., A_{TM}, HALT_{TM}: recognizable but not decidable
 – About other systems: E.g., ambiguity of CFGs
 – About programs

• Main proof techniques:
 diagonalization, reduction
The big picture

Ability to specify and reason about abstract formal models of computational systems is an important life skill. Practice it.