Regular Expressions

Short hands

\[L((a|b)c) = L(a^*b^*c^*) \]

\[L(((a|b)c)(a|b)) = \{a, b, c\} \]

Procedural Left Associativity

\[(a|b)c \]

\[a|b \cdot c^+ \]

\[(a|b)(b|(c^*)) \]

\[L(\emptyset) = \emptyset \]

\[L(\epsilon) = \{\epsilon\} \]

\[L(a|b|c) = L(a) \cup L(b) \cup L(c) \]

Regular expressions over \(\Sigma \)

\[\emptyset \text{ is an RE.} \]

\[\epsilon \text{ is an RE.} \]

\[a \text{ is an RE.} \]

\[a^* \text{ is an RE.} \]

is \(R_1 \) \& \(R_2 \) are REs, then so are

\[(R_1 \cup R_2) \]

\[(R_1 \cdot R_2) \]

\[(R_1^*) \]

The language denoted by \(R, \Sigma \epsilon \)

is:

\[L(a) = \emptyset \]

\[L(\epsilon) = \{\epsilon\} \]

\[L(a|b|c) = L(a) \cup L(b) \cup L(c) \]

"Words ending with "TXT""

\[\epsilon^*TXT \]

\[(a|b|c)^*(a|b|c)^*(a|b|c)^* \]

\[2|(ld)^* \]

\[(\Sigma\epsilon)^* \]

\[(\Sigma^+\epsilon^+\Sigma^+) \]

\[0^*10^* \]

\[a^* \]

\[(\Sigma\epsilon)(\Sigma\epsilon) \]

\[\Sigma \]

\[0^*(10^*10^*)^* \]

\[0^* \]

\[(0^*10^*10^*)^* \]

\[0^*10^*10^* \]

\[(d^*d^*u|d|d^*) \]

\[(\Sigma\epsilon)(\Sigma\epsilon) \]

\[d^+ \]
Theorem:
A regular expression $R \in \mathcal{RE}$ and an NFA $M_a \in \mathcal{L}(R) \subseteq \mathcal{LCM}$.

Proof:
By induction on R, the # of $\lor, \cdot, *$ operators in R.

Base cases (Kao):
- Then R is \emptyset, ϵ, or a for $a \in \Sigma$.
- Explicitly give simple NFAs recognizing \emptyset, ϵ, and a for each $a \in \Sigma$ (details omitted).

Induction Step (R has $k > 0$ operators):
- I.H.: Assume that for all regular expressions R' with k operators, there is an NFA $M_{R'}$ recognizing $\mathcal{L}(R')$.

If R has $k > 0$ operators, let:
- $R = (R_1 \lor R_2)$ or $(R_1 \cdot R_2)$ or $(R_1)^*$
- When $R_1 \cdot R_2$ is any $a \in \Sigma$ and $R_1 \lor R_2$ have k_1 operators.
- By I.H., $\exists M_{R_1}, M_{R_2}$ NFA recognizing $\mathcal{L}(R_1), \mathcal{L}(R_2)$.
- Modify M_{R_2} with previous proofs of closure under \cdot to get $M_a \in \mathcal{L}(R_a)$. (Details omitted.)

Converse?
For every $D/NFA \exists rgy expr defining the same language.
Every regular language can be described by a regular expression.

Theorem

If L is accepted by a GNFA, then L is regular.

Proof Sketch:

Replace edge labeled "r" by NFA equivalent to r based on previous theorem.
If L is regular, then $L = L(R)$ for some regular expression R.

Proof will take FA for L, & reduce it to a (G)NFA for same L with progressively fewer states until R becomes obvious.
In a nutshell, delete state k from G, but enlarge language on each edge to compensate, so that potential contribution of k is added to each edge in G'.

Path in G: 1 2 3 k 4 k k 2 1 ...
Path in G': 1 2 3 4 2 1 ...

Strings in L(edge reg exp)

Claim 2

\[
L(\gamma ij) = \{ w | G \text{ can move from } i \text{ to } j \text{ reading } w \text{ and passing through no intermediate states except possibly } k \}.
\]

Equivalently:

\[
L(\gamma ij) = \{ w | G \text{ can move from } i \text{ to } j \text{ reading } w \text{ along a simple path } \gamma \}
\]

\[
\equiv \{ w \gamma_{i:k} \gamma_{k:j}^* | w \}
\]

Relating edges of G' to paths in G:

A path in G: any sequence of states
A simple path in G: any sequence of 3 states at 1st 2 last are not, and all intermediate ones (if any) are.

The Point:
(a) every path in G can be decomposed into simple paths
(b) every edge in G', say i→j, corresponds to the edge in simple path in G with these end points
Claim 41: A NFA is equivalent to a regular expression.

Proof: NFA \rightarrow GNFA \rightarrow 2-state GNFA \rightarrow RE

Summary:
- L is regular \Rightarrow $L = L(M)$ for some DFA M
- $L = L(C(N))$ for some NFA N
- $L = L(C(G))$ for some GNFA G
- $L = L(CR)$ for a regular expression R