CSE 322, Fall 2010

(Deterministic)
Finite State Machines
Finite State Automaton (FSA)

5 pieces

- States
- Alphabet
- Transitions
- Start
- Final or Accept
An Example: Even Parity

\[z = 0, 1 \wedge \exists m \exists z = \not \exists \forall \exists 1 \wedge w \text{ is even} \]
An Example: Even Parity

- The "obvious" algorithm: first count the 1's, then decide whether the count is even:

- It works, but is not a finite state machine. This is:
Formal definition

A finite state machine

\[M = (Q, \Sigma, s, s_0, F) \]

where

- \(Q \) is a set (states)
- \(s \in Q \) start state
- \(\Sigma \) is a finite set (alphabet)
- \(F \subseteq Q \) Final states
- Accepting states
- \(s : Q \times \Sigma \to Q \) transition function
Formal version of parity, I

\[M_{\text{parity}} = (Q, \Sigma, \delta, q_0, F) \]

where

\[Q = \{ \text{even, odd} \} \]

\[\Sigma = \{ 0, 1 \} \]

\[q_0 = \text{even} \quad (\text{one element}) \]

\[F = \{ \text{even} \} \quad (\text{a set containing one element}) \]

\[\delta(q, a) \]

\[
\begin{array}{c|c|c|c}
q & 0 & 1 \\
\hline
\text{even} & \text{even} & \text{odd} \\
\text{odd} & \text{odd} & \text{even}
\end{array}
\]
Even more succinctly, if we let $Q = \{0, 1\}$ also
then $\delta(q, a) = (q + a) \mod 2$

for all q in Q and all a in Σ
Example

\[\Sigma = \{ a, b \} \]

\[L = \{ w \mid \text{2nd letter of } w \text{ is “a”} \} \]
Example

\[\Sigma = \{ a, b \} \]

\[L = \{ w | \text{3rd letter of } w \text{ is } \text{“a”} \} \]
\[\Sigma = \{a, b, \epsilon\} \]
\[L = \{ \omega \mid 3^{rd} \text{ letter from the right end of } \omega \text{ is } a \} \]

<table>
<thead>
<tr>
<th></th>
<th>(\epsilon)</th>
<th>(a)</th>
<th>(b)</th>
<th>(\text{aa, ab, ba, bb})</th>
<th>(\text{aaa})</th>
<th>(\text{aab})</th>
<th>(baa)</th>
<th>(\text{bbb})</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
L = { w in {a,b}* | 3rd letter from the right end of w is "a" }
L = \{ w \in \{a,b\}^* \mid 3rd letter from the right end of w is "a" \}

M = (\emptyset, \Sigma, S, \delta, \epsilon, F)

\Sigma = \{a, b\}

\emptyset = \{ w \in \Sigma^+ \mid |w| \leq 3 \}

\delta_0 = \varepsilon

F = \{ w \in \Sigma^+ \mid w = ax, |x| = 2 \}

\forall a, b, c \in \Sigma \delta(c, w, c) = \text{last 3 letters of } w$
DEF

"M ends in state \(q \) after reading \(w \in \Sigma^* \) if:

1. \(w = w_1, w_2, \ldots, w_n \)
 where \(w_i \in \Sigma \)

2. \(\exists \) state \(r_0, r_1, r_2, \ldots, r_n \in Q \)
 s.t.
 a) \(r_0 = q_0 \)
 b) \(\forall 1 \leq i \leq n \)
 \(s(r_{i-1}, w_i) = r_i \)

3. \(r_n = q \)

Fact: \(q \) is unique

because \(s \) is a function, basically.

Exercise: what state is \(M \) in after reading \(\varepsilon \)?
Defn

\[M \text{ accepts } w \in \Sigma^* \iff \text{the state } q, \text{ reached by } M \text{ after reading } w \text{ is an accepting state, i.e., } q \in F. \]

And \(M \) rejects \(w \) iff \(q \notin F \)

Defn

The language recognized by \(M \),

\[L(M) = \{ w \in \Sigma^+ \mid \text{M accepts } w \} \]

Strings are accepted/rejected

Languages are recognized (or not)

Note

Every \(M \) recognizes exactly one language. Implicitly, it "recognizes" both strings it must accept and those it must reject.
Example

M: 0.0

0.1
Example

\[M : \emptyset \quad L(M) = \Sigma^* \]
Example

\[M : \begin{array}{c}
0,1 \\
0,0
\end{array} \]

\[L(\alpha) = \Sigma^* \]

\[L_{\text{pal}} = \{ \omega \in \{0,1,3\}^* \mid \omega = \omega^R \} \]

E.g. 101 and 001100 are palindromes
110 is not

\[M \text{ above accepts every palindrome} \]

\[\therefore \ L_{\text{pal}} \subseteq L(\alpha) \]

but \(M \) also accepts some (in fact, all) non palindromes

\[\therefore \ L_{\text{pal}} \neq L(\alpha) \]
An example

Defn for any a in Σ, w in Σ^*
$\#_a(w)$ is the number of instances of the symbol a in the string w

E.g. $\#_1(1011) = 3$

$M = (\{0,1,2,3\}, \{0,1\}, \delta, 0, \{1,3\})$ where

$\delta(i,0) = i$
$\delta(i,1) = (i+1) \mod 4$

What does M do?
Claim: \(\forall w \in \Sigma^*, \) the state \(M \) is in after reading \(w \) ("\(\delta(0,w) \)") is \((\#_1(w)) \mod 4 \)

[Isn’t this just the defn of \(\delta \)? No; \(w \in \Sigma^* \), not \(\Sigma \)]

Proof: By induction on \(|w|\)

Basis (\(|w| = 0\)): then \(w = \varepsilon \), and \(\#_1(\varepsilon) = 0 \), and by definition of “state \(M \) is in...”, \(M \) is in its start state, namely state 0.

Ind hyp: For some \(n > 0 \), assume the statement in the claim is true for all strings \(w \) of length \(< n \).

Ind: Let \(w \) be a string of length \(n \). Since every non-\(\varepsilon \) string has a last letter, \(w = xa \) for some \(a \) in \(\Sigma \), and some string \(x \) of length \(< n \). Let \(i = (\#_1(x)) \mod 4 \). I.H. applies to \(x \), so we may assume \(M \) is in state \(i \) after reading \(x \). By def of \(\delta \) and “state reached after reading a string,” after reading \(w = xa \), \(M \) is in state \(\delta(i,a) \). Two cases, depending on \(a \) (and \(\delta \)):

- case 1: \(a = 0 \). Then \(\delta(i,a) = i \), and \(\#_1(xa) = \#_1(x) \equiv i \mod 4 \)
- case 2: \(a = 1 \). Then \(\delta(i,a) = (i+1) \mod 4 \), and \(\#_1(xa) = \#_1(x) + 1 \equiv i+1 \) (mod 4)

Which establishes the claim.
• Corollary: the language recognized by M is $\{w \in \{0,1\}^* \mid \#_1(w) \mod 4 = 1 \text{ or } 3 \}$. Equivalently, $\#_1(w)$ is odd.

Proof: by claim, exactly these strings cause M to end in state 1 or 3, which are its only final states.

• Note: it’s important that the claim above ignored final states. E.g., if we changed the set of final states to, say, $\{1,2\}$ then the claim is still valid (tho the corollaries above would need to be adjusted accordingly).
Compare above to:

```c
int i = 0;

while(! end_of_file){
    char a = get_char_from_file;
    if( a == '1') { i = i+1;}
}

print i;
```
int i = 0;
while(! end_of_file){
 char a = get_char_from_file;
 if(a == '1') { i = i+1;}
}
print i;

Compare above to:

int i = 0;
while(! end_of_file){
 char a = get_char_from_file;
 if(a == '1') { i = i+1;}
}
print i;

claim: i == 0
claim: i == 1read so far
claim: i == #1 in file
The message

• A program is a finite, static thing

• But to understand it, you need to reason about its dynamic behavior in infinitely many situations

• Like it or not, you do induction on loops (and recursions) all the time
Prefix

\[x \text{ is a prefix of } w \]

if \(\exists y \text{ s.t. } w = x y \) \((w, x, y \text{ in } \Sigma^*)\)

Eq.

prefixes of \(abb \) are \(\varepsilon, a, ab, abb \)

Facts

\(\varepsilon \) is always a prefix

every \(w \) is a prefix of itself

if \(|w| = n \) then \(w \) has \(n+1 \) prefixes
Another Induction Example
\[\Sigma = \{a, b, \lambda\} \]
\[f(\lambda) = \#_a(\lambda) - \#_b(\lambda) \]
\[\text{leg} = \exists w \mid f(w) = 0 \]

\[L = \{ w \mid f(w) = 0 \land \forall x \leq |w|, \exists y \leq |x| \quad f(x) \leq 4 \} \]

\[g(w) = \begin{cases} f(w) & \text{if } f(x) \leq 4 \text{ for all prefixes } x \leq w \\ 0 & \text{o.w.} \end{cases} \]

\[Q = \{ -42, -41, \ldots, 41, 42, 43 \} \]
\[q(0) = \begin{cases} 8 + 1 & \text{if } c = a, 8 < q_2 \\ \frac{c}{b-1} & \text{if } c = b, 8 \geq q_2, \text{o.w.} \end{cases} \]
Claim: \(\forall w \in \Sigma^* \) the state reached by \(M \) after reading \(w \) is \(q = g(w) \)

Correct: \(M \) accepts \(L \) (but not \(L_{eq} \))

Proof:
- \(M \) accepts \(w \) if and only if \(M \) ends in \(F \) by definition and construction.
- \(M \) ends in \(F \) if and only if \(0 = g(w) \) by claim.
- \(0 = g(w) \) if and only if \(w \in L \) by definition.
Claim \(\forall w \in \Sigma^* \), state reached by \(M \) after reading \(w \) is \(g(w) \)

\(P(n) \): \(\forall w \in \Sigma^n \) state \(g(w) \) is reached

To prove \(\forall n \geq 0 \ P(n) \)

Basis \(n = 0 \), \(w = \varepsilon \)

- \(M \) reaches state \(0 \) on \(\varepsilon \)
 - By construction, \(g(\varepsilon) = 0 \) by construction
 - Say more

Induction \(P(n) \Rightarrow P(n+1) \)

Let \(w \) be of length \(n+1 \)

- \(w = x \varepsilon \) for some \(x \in \Sigma^n \)

Case 1: \(c = a \)

- \(g(x) = 99 \)
 - \(M \) is in \(99 \) after reading \(x \) \(\) by \(IH \)
 - By work

 - \(g(x, a) = 99 \)
 - \(g(x, a) = 99 \)
 - \(P(n+1) \)

 - Argue based on \(g(x, a) = 99 \)
(b) \(g(x) = 42 \)

\[\text{similar} \]

(c) \(-42 \leq g(x) \leq 42\)

\[\text{Min} g(x) \text{ after } x \]

\[s(g(x), a) = g(x) + 1 \]

\[g(x+1) = g(x)+1 \]

\[\therefore P(x+1) \]

\[g(x) \leq 42 \]

\[f(x) \leq 42 \]

\[f(x+1) = f(x)+1 \leq 42 \]
Case 2, $c = b$: similar

QED

(end of induction example; Suggest you work through it yourself, to see that you can fill in the missing steps and write justifications for other steps.)
Regular Languages

$L \subseteq \Sigma^*$ is regular iff
$L = L(M)$ for some F.A. M

Examples

"even parity" is regular
"3rd from right" is regular
"odd length" is regular
"\Sigma^*" is regular
Closure Properties
Are there general ways to prove languages are regular, other than making more and more example M's?
Theorem

If L is regular, then so is $\Sigma^* - L$.
Theorem

If L is regular then so is $\Sigma^* - L$

Proof

L regular, so $L = L(M)$ for some FA $M = (Q, \Sigma, \delta, q_0, F)$

Let $M' = (Q, \Sigma, \delta, q_0, Q - F)$

For all $w \in \Sigma^*$:

M accepts w \iff

M is in a state $q \in F$ after reading w

$\iff M' \ldots \ldots \ldots$

$\iff M'$ rejects w (since $q \in F \iff q \not\in (Q - F)$)

$\therefore w \in L(M) \iff w \not\in L(M')$

i.e. $L(M') = \Sigma^* - L$ is regular.
Closure Properties

A set is “closed” under some operation if applying the op to set members always yields a set member.

Examples

\[\mathbb{N} \text{ is closed under} +, \times \quad (e.g. 1 + 2 \in \mathbb{N}) \]

but not under \(-, \) (e.g. 1 - 2 \notin \mathbb{N})

\[\mathbb{Z} \text{ is closed under} +, -, \times \quad (1 - 2 \in \mathbb{Z}) \]

but not under \(/ \quad (1/2 \notin \mathbb{Z})

The set of regular language is closed under complementation.

Unary ops, too; e.g.:

\[\mathbb{N} \text{ is closed under squaring} \]

but not sqrt.
Suppose

1. Program 1 recognizes L_1
2. Program 2 recognizes L_2

Is there a program recognizing $L_1 \cup L_2$?

$L_1 \cap L_2$?
• Need to define carefully “language recognized by a Java program,” etc., but the results suggested above are fairly intuitive

• Run prog 1 on input, then run prog 2 on same input; accept if either \(\cup \)/both \(\cap \) do.

• A really important difficulty: what if P1 doesn’t halt?

• Fix for this problem: run both in parallel: 1st step of P2 then 1st step of P2 then next step of P1, then...

• Bottom Line: “yes, the set of languages recognized by Java programs is closed under union and intersection.”
Example for FAs

- $\Sigma = \{0, 1, a, b\}$

- $L_1 = \{ w \in \{0,1\}^* | w \text{ has even parity} \}$

- $L_2 = \{ w \in \{a,b\}^* | w \text{ has exactly 5 a's} \}$

- $L_1 \cup L_2$
 Easy-ish: 1st letter tells which case

- $L_3 = \{ w \in \{0,1\}^* | w \text{ has exactly 5 1's} \}$

- $L_1 \cup L_3$
 Not so easy: both cases use just 0/1
Closure under Union

\[M_i = (Q_i, \Sigma, S_i, q_0, \delta_i, F_i) \]

\[M = (Q_1 \times Q_2, \Sigma, \delta, (q_0, q_0), F) \]

\[\forall q_1 \in Q_1, \forall q_2 \in Q_2: a \in \Sigma \]

\[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]

\[F = (F_1 \times Q_2) \cup (Q_1 \times F_2) \]

\[F = \{ (a, b) \mid \text{either } a \in F_1 \text{ or } b \in F_2 \} \]
Claim:
\[\forall q_1 \in Q_1, \forall q_2 \in Q_2, \forall w \in \Sigma^* \]
\[M \text{ is in state } (q_1, q_2) \text{ after reading } w \iff M_1 \text{ is in } q_1 \text{ after reading } w \]
\[\text{and } M_2 \text{ is in } q_2 \]

Proof:
Homework (induction on \(|w|\))

Corollary:
\[L(M) = L(M_1) \cup L(M_2) \]

Note:
Claim looks a lot like def of δ

But $\delta(-,a)$ for finite set Q or

claim "$\ldots\,$" for infinite set $w \in \Sigma^*$