As usual, three separate, stapled, turn-in bundles this week, with your name on each please: Problem(s) 1–3 in one, problem(s) 4–6 in another and problem(s) 7 (plus 8, if you do it) in the third.

Note on text book editions: Problem numbers/pages are from the US second edition of Sipser. If you have a different edition, consult the scanned versions online on the course web site. See very early class email for password.

Problems below are on pages 84-89.

1. 1.7bc.
2. 1.8a.
3. 1.9a.
4. 1.10c.
5. 1.14(b).
6. 1.16. Show all states, transitions, etc., as specified by the construction, i.e., don’t use shortcuts or “optimize” it.
7. Give a correctness proof for the “closure under concatenation” construction given in Theorem 1.47. Give both a short, convincing, one paragraph “proof idea” similar to those in the text, and a more formal proof. For the later, give a proof roughly in the style and level of detail given for closure under star in lecture and on NFA slides 34-37. But note that the version on the slides is a little more terse than desired, just due to the limited space available on a slide, but your proof need not be more than, say, twice as long.
8. (Extra Credit) For languages $A, B \subseteq \Sigma^*$, define $\text{SHUFFLE}(A, B)$ to be the set
\[
\{w \mid w = a_1b_1a_2b_2\cdots a_kb_k \text{ where } a_1 \cdots a_k \in A \text{ and } b_1 \cdots b_k \in B, \text{ with each } a_i, b_i \in \Sigma^*\}.
\]
Show that the regular languages are closed under shuffle. Give both a short, convincing, one paragraph “proof idea” similar to those in the text, and a formal proof. Hint: A variant of the “Cartesian product” construction in Theorem 1.25 may be useful. And, yes, “induction is your friend.”

Note: Read the definition carefully. It says “$a_1 \cdots a_k \in A$,” not “$a_1, \ldots, a_k \in A$”; the latter specifies k strings, each individually in A; the former specifies k strings, perhaps none in A, whose concatenation (in order) is a single string in A.

Example: if $A = a^*b$ and $B = \text{even parity}$, then $\text{shuffle}(A, B)$ includes strings like $aab0110$ and $a01ab0$ and $0a1a1b0$ and $0110aab$ (but not $ab00ab$). All 4 examples could be expressed using $k = 8$ and half of $a_i, b_i = \epsilon$. Alternatively, the 1st can be expressed using $k = 1$, and no ϵ’s, the fourth with $k = 2$ and 2 ϵ’s, etc.