Myhill-Nerode Theorem

Definition Let \(A \) be any language over \(\Sigma^* \). We say that strings \(x \) and \(y \) in \(\Sigma^* \) are *indistinguishable by \(A \)* iff for every string \(z \in \Sigma^* \) either both \(xz \) and \(yz \) are in \(A \) or both \(xz \) and \(yz \) are not in \(A \). We write \(x \equiv_A y \) in this case.

Note that \(\equiv_A \) is an equivalence relation. (Check this yourself.)

Definition Given a DFA \(M = (Q, \Sigma, \delta, s, F) \) we say that two strings \(x \) and \(y \) in \(\Sigma^* \) are *indistinguishable by \(M \)* iff \(\delta^*(s, x) = \delta^*(s, y) \), i.e. the state reached by \(M \) on input \(x \) is the same as the state reached by \(M \) on input \(y \). We write \(x \equiv_M y \) in this case.

Note that \(\equiv_M \) is an equivalence relation and that it only has a finite number of equivalence classes, one per state. In fact, the equivalence classes of \(\equiv_M \) are precisely the sets of inputs that you would have used to document the states of \(M \).

Lemma 1 If \(A = L(M) \) for a DFA \(M \) then for any \(x, y \in \Sigma^* \) if \(x \equiv_M y \) then \(x \equiv_A y \).

Proof Suppose that \(A = L(M) \). Therefore \(w \in A \iff \delta^*(s, w) \in F \). Suppose also that \(x \equiv_M y \). Then \(\delta^*(s, x) = \delta^*(s, y) \).

Let \(z \in \Sigma^* \). Clearly \(\delta^*(s, xz) = \delta^*(s, yz) \). Therefore

\[
\begin{align*}
 xz \in A & \iff \delta^*(s, xz) \in F \\
 & \iff \delta^*(s, yz) \in F \\
 & \iff yz \in A
\end{align*}
\]

It follows that \(x \equiv_A y \). \(\square \)

This lemma says that whenever two elements arrive at the same state of \(M \) they are in the same equivalence class of \(\equiv_A \). This means that each equivalence class of \(\equiv_A \) is a union of equivalence classes of \(\equiv_M \).

Corollary 2 If \(A \) is regular then \(\equiv_A \) has a finite number of equivalence classes.

Proof Let \(M \) be a DFA such that \(A = L(M) \). The Lemma shows that \(\equiv_A \) has at most as many equivalence classes as \(\equiv_M \), which has a finite number of equivalence classes (equal to the number of states of \(M \)). \(\square \)

We now get another way of proving that languages are not regular, namely given \(A \) find an infinite sequence of strings \(x_1, x_2, \ldots \) and prove that they are not equivalent to each other with respect to \(\equiv_A \).
Claim 3 $A = \{0^n1^n : n \geq 0 \}$ is not regular.

Proof Consider the infinite sequence of strings x_1, x_2, \ldots where $x_i = 0^i$ for $i \geq 1$. We now see that no two of these are equivalent to each other with respect to \equiv_A: Consider $x_i = 0^i$ and $x_j = 0^j$ for $i \neq j$. Let $z = 1^i$ and notice that $x_iz = 0^i1^i \in A$ but $x_jz = 0^j1^i \notin A$. Therefore no two of these strings are equivalent to each other under \equiv_A, so \equiv_A has an infinite number of equivalence classes. Therefore by the above Corollary, A cannot be regular.

One nice thing about this method for proving things nonregular is that, unlike the pumping lemma, it is always guaranteed to work because the corollary above is a precise characterization of the regular languages. The statement of this fact is known as the Myhill-Nerode Theorem after the two people who first proved it.

Theorem 4 (Myhill-Nerode Theorem) A is regular if and only if \equiv_A has a finite number of equivalence classes. Furthermore there is a DFA M with $L(M) = A$ having precisely one state for each equivalence class of \equiv_A.

Proof The corollary above already gives one direction of this statement. All we now need to show is that if \equiv_A has a finite number of equivalence classes then we can build a DFA $M = (Q, \Sigma, \delta, s, F)$ accepting A where there is one state in Q for each equivalence class of \equiv_A. Here is how it goes:

Let A_1, \ldots, A_r be the equivalence classes of \equiv_A. Remember that the A_i are disjoint and their union is all of Σ^*. Define $Q = \{q_1, \ldots, q_r\}$. Our goal will be to define the machine M so that $\delta^*(s, x) = q_j \iff x \in A_j$.

Let $s \in Q$ be the one q_i such that $\epsilon \in A_i$.

Note that for any A_j and any $a \in \Sigma$, for every $x, y \in A_j$, xa and ya will both be contained in the same equivalence class of \equiv_A. (For any $z \in \Sigma^*$, $xaz \in A \iff yaz \in A$ since x and y are in the same equivalence class of \equiv_A.)

To figure out what $\delta(q_j, a)$ should be, all we do is pick some $x \in A_j$, find the one k such that $xa \in A_k$ and set $\delta(q_j, a) = q_k$. The answer will be the same no matter which x we choose.

To pick the final states, note that for each j, either $A_j \subset A$ or $A_j \cap A = \emptyset$. Therefore we let $F = \{q_j \mid A_j \subseteq A\}$.

It is easy to argue by induction that $\delta^*(s, x) = q_j \iff x \in A_j$. This, together with the choice of F ensures that $L(M) = A$. □

By the proof of the corollary above we know that the number of states of M constructed above is the smallest possible. (In fact, if one looks at things carefully one can see that all DFA’s of that size for A have to look the same except for the names of the states.)

However, in general, even though A is a regular language we may not have a nice description of \equiv_A at our disposal in order to build M. What happens if all we have is some DFA accepting A? That’s the subject of the next handout, Minimizing DFAs.