CSE 322:
Introduction to Formal
Models in Computer Science

Cocke-Kasami-Younger Algorithm
Paul Beame

Determining whether \(w \in L(G) \)

- Assume \(G=(V, \Sigma, R, S) \) is in Chomsky Normal Form
- Grammar rules allowed:
 - \(A \to BC \) where \(B, C \in V \), \(B, C \neq S \)
 - \(A \to a \) where \(a \in \Sigma \)
 - \(S \to \epsilon \)
- If \(w=\epsilon \) check whether \(S \to \epsilon \) is in \(R \)
- If \(w=a \in \Sigma \) then check whether \(S \to a \) is in \(R \)
- Otherwise, parse tree must be a binary tree and first rule is some \(S \to BC \)

Recursive Algorithm (Exponential Time)

Generates(A,w)
if \(|w| \leq 1 \) output true iff \(A \to w \) is a rule in \(R \)
else
 \(n \leftarrow |w| \)
 for \(k=1 \) to \(n-1 \)
 \(x \leftarrow w[1..k] \); \(y \leftarrow w[k+1..n] \)
 for each rule \(A \to BC \) in \(R \)
 if Generates(B,x) and Generates(C,y)
 output true
 endfor
 endfor
output false
endif

Dynamic Programming

- All the recursive calls are subproblems of the type Generates(A,x) where
 - \(A \in V \)
 - \(x=w[i..j] \)
 - Intervals in \(w \) get shorter the deeper the call
- CKY Algorithm: Create a table whose \((i,j)\)th entry is the list of all variables that can generate the string \(w[i..j] \)
 - Fill out table starting with short intervals first
 - Answer is whether \(S \) is in table(1,n) where \(n=|w| \)

CKY algorithm: \(O(n^3) \) time

- Base
 - for all \(i=1 \) to \(n \)
 - table(i,j)←\{variables \(A \) with rule \(A \to w \)\}
- Iteration for \(d=1 \) to \(n-1 \)
 - Entries table(i,j) with \(j-i<d \) already computed
 - for every \((i,j)\) with \(j-i+d \) do
 - for \(k=1 \) to \(j-1 \)
 - for every rule \(A \to BC \)
 - if \(B=table(i,k) \) and \(C=table(k+1,j) \)
 - Add \(A \) to table(i,j)