CSE 322 Winter 2007
Assignment #4

Due: Friday, February 2, 2007

Reading assignment: Finish reading section 1 of Sipser’s book and read handouts on the Myhill-Nerode
Theorem and Minimization of Finite Automata.

Problems:

1. Use the construction given on the handout for converting NFAs to Regular Expressions to build a
 regular expression for the language accepted by the DFA M_2 in question 1.1 of Sipser’s text (both
 editions). Show your steps.

2. Use the method given in class to design a linear time algorithm to determine whether or not the string
 $ababbababaa$ is contained in strings over the alphabet $\{a, b\}$.

3. Use the pumping lemma to prove that the following languages are not regular.
 (a) $\{www \mid w \in \{a, b\}^*\}$.
 (b) $\{0^n1^m0^n \mid m, n \geq 0\}$.
 (c) $\{a^n \mid n \text{ is prime}\}$.

4. Use the method from the Myhill-Nerode handout to prove that the following languages are not regular.
 (a) $\{www \mid w \in \{a, b\}^*\}$.
 (b) $\{0^n1^m0^n \mid m, n \geq 0\}$.
 (c) $\{w \mid w \neq w^R, w \in \{0, 1\}^*\}$.

5. Show that the language

 $\{a^ib^jc^k : i, j, k \geq 0, \text{ and if } i = 1 \text{ then } j = k\}$

 satisfies the conclusion of the pumping lemma (and therefore the pumping lemma cannot prove that it
 is not regular). Show that it is not regular using another method. Explain why this does not contradict
 the pumping lemma.

6. (Extra Credit) On the 2nd homework, problem 5 asked you to describe an NFA with $k + 1$ states that
 recognizes the language $C_k = \Sigma^*a\Sigma^{k-1}$ where $\Sigma = \{a, b\}$. Prove that any DFA that recognizes C_k
 must have at least 2^k states.