322 Midterm Review

- **Formal Languages**
 - Alphabet (Σ)
 - String (Σ^*)
 - Length ($|x|$)
 - Empty String (ε)
 - Empty Language (\emptyset)

- **Language/String Operations**
 - “Regular” Operations:
 - Union (\cup)
 - Concatenation (\cdot)
 - (Kleene) Star (*)
 - Other:
 - Intersection
 - Complement
 - Reversal
 - ...
Finite Defns of Infinite Languages

- English, mathematical
- DFAs
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts \(w \in \Sigma^* \)
 - M recognizes \(L \subseteq \Sigma^* \)
- Nondeterminism
- NFAs
 - Transitions (δ relation)
 - Missing out-edges
 - \(\varepsilon \)-moves
 - Multiple out-edges
 - N accepts \(w \in \Sigma^* \)
 - N recognizes \(L \subseteq \Sigma^* \)
- Regular Expressions
 - \(\emptyset, a \in \Sigma, \cup, \cdot, *, () \)
- GNFAs
Key Results, Constructions, Methods

• L is regular iff it is:
 – Recognized by a DFA
 – Recognized by a NFA
 – Recognized by a GNFA
 – Defined by a Regular Expr

Proofs:

 GNFA → Reg Expr
 (Kleene/Floyd/Warshall: $R_{ij} R_{jj}^* R_{jk}$)

 Reg Expr → NFA
 (join NFAs w/ ε-moves)

 NFA → DFA
 (subset construction)

• The class of regular languages is closed under:
 – Regular ops: union, concatenation, star
 – Also: intersection, complementation,
 (& reversal, prefix, no-prefix, …)

• NOT closed under \subseteq, \supseteq

• Also: Cross-product construction (union, …)
Non-Regular Languages

<table>
<thead>
<tr>
<th>Key idea: once M is in some state q, it doesn’t remember how it got there.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g. “hybrids”:</td>
</tr>
<tr>
<td>if $xy \in L(M)$ and</td>
</tr>
<tr>
<td>x, x' both go to q, then</td>
</tr>
<tr>
<td>$x'y \in L(M)$ too.</td>
</tr>
<tr>
<td>E.g. “loops”:</td>
</tr>
<tr>
<td>if $xyz \in L(M)$ and</td>
</tr>
<tr>
<td>x, xy both go to q, then</td>
</tr>
<tr>
<td>$xy^iz \in L(M)$ for all $i \geq 0$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cor: Pumping Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important examples:</td>
</tr>
<tr>
<td>$L_1 = { a^n b^n</td>
</tr>
<tr>
<td>$L_2 = { w</td>
</tr>
<tr>
<td>$L_3 = { ww</td>
</tr>
<tr>
<td>$L_4 = { ww^R</td>
</tr>
<tr>
<td>$L_5 = { \text{balanced parens} }$</td>
</tr>
</tbody>
</table>

| Also: closure under \cap, complementation sometimes useful: |
| $L_1 = L_2 \cap a^*b^*$ |

| PS: don’t say “Irregular” |
Applications

• “globbing”
 – lpr *.txt

• pattern-match searching:
 – grep “Ruzzo.*terrific” *.txt

• Compilers:
 – $Id ::= \text{letter} (\text{letter|digit})^*$
 – $\text{Int ::= digit} \ \text{digit}^*$
 – $\text{Float ::= } d \ \text{d}^* . \ \text{d}^* (\ \varepsilon | E \ d \ \text{d}^*)$