What's not regular?

1. $\{0^n 1^m \mid n \geq 0, m \geq 0\}$
2. $\{0, 1, 0, 1\}$
3. $\{0^n 1^n \mid n \geq 0\}$
4. $\{0, 1, 0, 1\}$

Note: 3^{rd} letter from right is 13.
Suppose \(G \) is characterized by \(M \) with \(k \geq 8 \) states.

Consider 8 inputs.

\[
\begin{align*}
\text{if } 00x &= 00 \\
\text{or } 01x &= 01 \\
\text{or } 10x &= 10 \\
\text{or } 11x &= 11 \\
\text{then } x &= x \\
\text{or } x &= 0 \text{ or } 1
\end{align*}
\]

By P.H.P.

2 inputs \(\rightarrow \) same stat
8. if \(00x \)
\(21x \)
go to same state
ERROR \(x \in \text{Fault} \)
Take any M, DFA. Suppose M has \(q \) states.

Let \(q_i \) be state M is in after reading \(0^i \). Let \(0 \leq i \leq \varrho \)

for any \(0 \leq i, k \leq \varrho \), \(q_i = q_k \) if M accepts \(0^i \)

then it also accepts \(0^k \).

\[L(M) = \sum_{n \geq 0^3} \frac{0^i + (n-1) \cdot 0^i}{5} \]
Take any M, DFA.
Suppose M has \(p \) states.

Let \(q_i = \text{state } M \text{ is in after random } 0^i \)
\(0 \leq i \leq p \)

\(j \leq k \) p+1 value of \(i \), so for some
\(0 \leq i, k \leq p \) \(q_j = q_k \) \(j \neq k \)

If \(M \) accepts \(0^i \)

then \(q_i \) also accepts \(0^k \).

\(i < k \).

\(\therefore L(M) = \{ 0^n \mid n \geq 0 \} \)

\(0^j + (k-j) \cdot 0^5 \times 5 = 0^k \times 5 \)
Let $L = \exists w w^R \mid w \in \Sigma^*$

$\overline{abaabaaba}$

Suppose

Let M w/ p states accept L.

Let $w_1 \cdots w_{p+1}$ be w.

Let q_i be state M is in after reading a^i.

Disj.

$ba\cdots ga = gk$

$a^i b ba^i a^j b ba^i a^k ba^i a^j b ba^i a^k ba^i \cdots$ etc.

$p \geq \max\{w_i \cdots w_{p+1}\}$ all of same length

$w_j \cdot w_j \cdot R \subseteq L$

$w_k \cdot w_j \cdot R \subseteq L$
Pumping Lemma

If L is regular, then there exists a positive integer p such that for all $x \in L$ with $|x| \geq p$, there exist y and z such that $x = xyz$, $|yz| \leq p$, and for all $i \geq 0$, $xy^iz \in L$.

$|x| \geq p$

$|xy| \leq p$

$|y| \geq 2$

$|x|y| \leq p$