Figure 1.27

Symbol read

Nondeterministic Finite Automaton (NFA)

Figure 1.29
FIGURE 1.31

FIGURE 1.32
\[N = (Q, \Sigma, \delta, q_0, F) \]

\[S : Q \times \Sigma \rightarrow 2^Q \]

\[\Sigma_\varepsilon = \Sigma \cup \{ \varepsilon \} \]

\(Q, \Sigma, q_0, F \) as in DFA
DEF ("M is in state 8")

\(M \) ends in state 8 after reading \(w \) \(\in \Sigma^* \) if

1. \(w = w_1w_2 \ldots w_n \)
 where \(w_i \in \Sigma \cup \{\epsilon\} \)

2. \(\exists \) states \(r_0, r_1, r_2 \ldots r_n \in Q \)

 \(\forall (a) \quad r_0 = q_0 \)

 \(\forall (b) \quad \forall 1 \leq i \leq n \)

 \(r_i \in S \left(r_{i-1}, w_i \right) = \forall r_i \)

\(\forall (c) \quad r_n = 8 \)

\textbf{Fact:} 8 is unique because \(S \) is a function, basically

\(M \) accepts \(w \) \(\iff \) the state 8 reached by \(M \) after reading

\(w \) \(\in \) \(\Sigma^* \) \(\subseteq F \)

\(L(M) = \{ w \in \Sigma^+ | M \text{ accepts } w \} \)