Closure under \(U \)
even parity \(\leq 30,13^* \)
or 3rd from right is \(a = 30,63^* \)

\[M_1 = (q_1, S, S_2, \theta_0, c, F) \]
\[M = (Q_1 \times Q_2, S, S, (\theta_0, \theta_0), F) \]
\[a \in Q_1, \ b \in Q_2 \quad a \neq b \]

\[S \subset (B, B_2), a \]

\[F = F_1 \times Q_1 \cup Q_1 \times F_2 \quad \text{uni} \]

\[F' = F_1 \times F_2 \quad \text{inter} \]
To show by induction on length of w A $g_1 c Q$, $g_2 c Q$. If w M is in state (q_1, q_2) after
Vending $w \iff M_1$ is in state q_1 and M_2 is in state q_2.

Car

Accepts $L(M_1) \cup L(M_2)$

* Note that there is a key difference between statement \circ and the
definition of M: the later, via defn of S, says something about
the finite set of strings in Σ^*; \circ talks about the infinite set of
strings in Σ^*.
$x, y \leq 3^*$

$\exists x \cdot y = \exists x \cdot y \mid x \in X \& y \in Y$

Examples

$\text{Odd parity} \cdot \text{Odd parity} = \text{Even} \quad \exists \text{Odd}^*$

$\text{Odd parity} \cdot \text{Even} = \text{Odd}$

\[A \cdot B \begin{cases} ? \quad \begin{cases} \text{Finite} \quad \text{Finite} \end{cases} \end{cases} \quad \text{possible?} \]

\[Z^+ \cdot \emptyset = \emptyset \]

\[x \cdot y \equiv y \cdot x \]

\[\exists 03 \cdot \exists 13 \equiv \exists 13 \cdot \exists 03 \]

\[\text{always true?} \]

\[\text{no} \]

4-3
$x, y \leq 3.013$
$x \leq 3.031$
$\Rightarrow \text{"marked concatenation"}$