DEFN

("M finishes state \(q \)")

\(M \) ends in state \(q \) after reading \(w \in \Sigma^* \) if

1. \(w = w_1 w_2 \ldots w_n \)
 where \(w_i \in \Sigma \)

2. \(\exists \) state \(y_0, y_1, y_2 \ldots y_n \in \Phi \)

\[r_0 = q_0 \]

\[y_i \leq i \leq n \]

\[s(y_{i-1}, w_i) = y_i \]

\[y_n = q \]

Fact: \(q \) is unique

because \(s \) is a function, basically

\(M \) accepts \(w \in \Sigma^* \) if \(q \) reached by \(M \) after reading

\(w \) is \(\in \mathcal{L}(M) \)

\[h(M) = \sum_{w \in \mathcal{L}(M)} m \]
Defn:

\(M \text{ accepts } w \iff \text{ the state, } q, \text{ reached by } M \text{ after reading } w \text{ is an accepting state, } \text{i.e. } q \in F \)

Defn:

The language recognized by

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

Note

Every \(M \) recognizes exactly one language. Implicitly, it "recognizes" only those strings it must accept and those it must reject.
Let $L \subseteq \Sigma^*$.

L is regular if $L = L(M)$ for some Finite Automaton M.

$\{0,1\}^*$

$L(M) = \Sigma^*$

Note: M accepts every palindrome, e.g., $a a a b a a a$, but also some non-palindromes, like $a b$.

L recognizes Σ^+; $L \subseteq \{0,1\}^*$ but $\neq L(M)$.

Regular languages. Example:
- "Even parity" is regular.
- "3rd from right is a" odd length.

Are there general ways to prove languages regular, other than making more & more example M's? Yes 3-2.
Theorem

If \(M = (Q, \Sigma, \delta, q_0, F) \) accepts \(L \) (i.e., \(L = L(M) \))

Then \(M' = (Q, \Sigma, \delta, q_0, Q - F) \) accepts \(\Sigma^* - L \)

Proof

\(M \) accepts \(w \) if it is in a state \(z \in F \) after reading \(w \)

\(\Rightarrow M' \) is in state \(Q \) after reading \(w \).

But \(z \in F \) so \(8 \in Q - F \)

\(\therefore M' \) rejects \(w \)
Regular languages are closed under complementation.