CSE 322

Exam Reviews
Basic Concepts

<table>
<thead>
<tr>
<th>Formal Languages</th>
<th>Language/String Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Alphabet (Σ)</td>
<td>- “Regular” Operations:</td>
</tr>
<tr>
<td>- String (Σ*)</td>
<td>- Union (∪)</td>
</tr>
<tr>
<td>- Length (</td>
<td>x</td>
</tr>
<tr>
<td>- Empty String (ε)</td>
<td>- (Kleene) Star (*)</td>
</tr>
<tr>
<td>- Empty Language (Ø)</td>
<td>- Other:</td>
</tr>
<tr>
<td></td>
<td>- Intersection</td>
</tr>
<tr>
<td></td>
<td>- Complement</td>
</tr>
<tr>
<td></td>
<td>- Reversal</td>
</tr>
<tr>
<td></td>
<td>- ...</td>
</tr>
</tbody>
</table>
Finite Defns of Infinite Languages

- **English, mathematical**
- **DFAs**
 - States
 - Start states
 - Accept states
 - Transitions (δ function)
 - M accepts $w \in \Sigma^*$
 - M recognizes $L \subseteq \Sigma^*$
- **Nondeterminism**
- **NFAs**
 - Transitions (δ relation)
 - Missing out-edges
 - ε-moves
 - Multiple out-edges
 - N accepts $w \in \Sigma^*$
 - N recognizes $L \subseteq \Sigma^*$
- **Regular Expressions**
 - \emptyset, $a \in \Sigma$, \cup, \cdot, \ast, ()
- **GNFAs**
Key Results, Constructions, Methods

- L is regular iff it is:
 - Recognized by a DFA
 - Recognized by a NFA
 - Recognized by a GNFA
 - Defined by a Regular Expr

Proofs:
- GNFA \rightarrow Reg Expr
 (Kleene/Floyd/Warshall: $R_{ij} R_{jj}^* R_{jk}$)
- Reg Expr \rightarrow NFA
 (join NFAs w/ ε-moves)
- NFA \rightarrow DFA
 (subset construction)

- The class of regular languages is closed under:
 - Regular ops: union, concatenation, star
 - Also: intersection, complementation, (
 & reversal, prefix, no-prefix, …)

- NOT closed under \subseteq, \supseteq

- Also: Cross-product construction (union, …)
Non-Regular Languages

• Key idea: once M is in some state q, it doesn’t remember how it got there.
 E.g. “hybrids”:
 if xy ∈ L(M) and
 x, x’ both go to q, then
 x’y ∈ L(M) too.

 E.g. “loops”:
 if xyz ∈ L(M) and
 x, xy both go to q, then
 xy^i z ∈ L(M) for all i ≥ 0.

• Cor: Pumping Lemma

• Important examples:
 L_1 = \{ a^n b^n | n > 0 \}
 L_2 = \{ w | \#_a(w) = \#_b(w) \}
 L_3 = \{ ww | w \in \Sigma^* \}
 L_4 = \{ ww^R | w \in \Sigma^* \}
 L_5 = \{ balanced \ parens \}

• Also: closure under ∩, complementation sometimes useful:
 – L_1 = L_2 ∩ a*b*

• PS: don’t say “Irregular”
Applications

• “globbing”
 – lpr *.txt

• pattern-match searching:
 – grep “Ruzzo.*terrific” *.txt

• Compilers:
 – Id ::= letter (letter|digit)*
 – Int ::= digit digit*
 – Float ::=
 d d* . d* (ε | E d d*)
 – (but not, e.g. expressions with nested, balanced parens, or variable names matched to declarations)

• Finite state models of circuits, control systems, network protocols, API’s, etc., etc.
Context-Free Grammars

- Terminals, Variables/Non-Terminals
- Start Symbol S
- Rules \rightarrow
- Derivations \Rightarrow, \Rightarrow^*
- Left/right-most derivations
- Derivation trees(parse trees)
- Ambiguity, Inherent ambiguity

- A key feature: recursion/nesting/matching, e.g.

 $$S \rightarrow (S)S \mid \varepsilon$$
Pushdown Automata

- States, Start state, Final states, stack
- Terminals (Σ), Stack alphabet (Γ)
- Configurations, Moves, |--, |--*, push/pop
Main Results

- **Closure**: union, dot, *, (Reversal)
 - every regular language is CFL
- **Non-Closure**: Intersection, complementation
- **Equivalence of CFG & PDA**
 - $\mathsf{CFG} \subseteq \mathsf{PDA}$:
 - top-down(match/expand), bottom-up (shift/reduce)
 - $\mathsf{PDA} \subseteq \mathsf{CFG}$: A_{pq}
- **Pumping Lemma & non-CFL’s**
- **Deterministic PDA \neq Nondeterministic PDA**
Important Examples

• Some Context-Free Languages:
 – \{ a^n b^n \mid n > 0 \}
 – \{ w \mid \#_a(w) = \#_b(w) \}
 – \{ w w^R \mid w \in \{a,b\}^* \}
 – balanced parentheses
 – "C", Java, etc.

• Some Non-Context-Free Languages:
 – \{ a^n b^n c^n \mid n > 0 \}
 – \{ w \mid \#_a(w) = \#_b(w) = \#_c(w) \}
 – \{ w w \mid w \in \{a,b\}^* \}
 – "C", Java, etc.

Curiously, their complements are CFL’s
Applications

• Programming languages and compilers
• Parsing other complex input languages
 – html, sql, …
• Natural language processing/
 Computational linguistics
 – Requires handling ambiguous grammars
• Computational biology (RNA)
The big picture

Ability to specify and reason about abstract formal models of computational systems is an important life skill. Practice it.