1. Give an informal description of a pushdown automaton recognizing the language defined by the following CFG:

 \[
 \begin{align*}
 E & \rightarrow E + T \mid T \\
 T & \rightarrow T \ast F \mid F \\
 F & \rightarrow (E) \mid a
 \end{align*}
 \]

 You do not need to follow either of the CFG-to-PDA constructions, nor give a formal correctness proof, but do give an informal argument/explanation for why/how it works.

2. Let \(G \) be the following CFG:

 \[
 \begin{align*}
 S & \rightarrow AA \mid B \\
 A & \rightarrow 0A \mid A0 \mid 1 \\
 B & \rightarrow 00B0 \mid 1
 \end{align*}
 \]

 (a) Describe \(L(G) \) in English.

 (b) Give an informal proof that your description is correct. In particular, include definitions of the strings of terminals generated by \(A \) and \(B \).

 (c) As in problem 1, give a PDA \(M \) recognizing the same language and informally argue correctness.

 (d) Show that \(M \) is nondeterministic by giving a (short!) input on which it has two computations. Show the two computations.

 (e) By analogy to the definition of an ambiguous CFG, I define a PDA to be ambiguous if there is some input on which it has two different accepting computations. Is \(M \) ambiguous? Why or why not? (Either show two accepting computations on some short input, or argue informally why this is impossible.)

3. Consider the following PDA \(M \):

 \[
 \begin{align*}
 &q_1 \xrightarrow{\varepsilon, \varepsilon \rightarrow S} q_2, (\varepsilon \rightarrow \varepsilon) \\
 &\varepsilon, S \rightarrow \varepsilon \\
 &\varepsilon, \varepsilon \rightarrow \varepsilon
 \end{align*}
 \]

 (a) Describe in English the language \(L \) recognized by \(M \). I want a nonprocedural description; don’t say “do this then if that do something else...” (Hint: it has a very simple description.)
4. Consider the following PDA M:

(a) Show that M is nondeterministic by giving a short input on which it has two computations. Show the two computations.

(b) Describe in English the language L recognized by M. I want a nonprocedural description; don’t say “do this then if that do something else...” (Hint: it has a very simple description.)

(c) Prove informally that M recognizes this language. Don’t forget to argue that it rejects all strings not in L, on all possible computations (and recall it’s nondeterministic). You don’t need to do a detailed induction proof or the like, but I want an argument that is thorough and convincing.

(d) Show that M is “ambiguous” by giving a short input on which it has two accepting computations. Show the two computations.