1. Let x and y be strings and let L be any language. We say that x and y are equivalent with respect to L if for every string $z \in \Sigma^*$ either xz and yz are both in L, or neither is. [So, x and y are not equivalent if and only if there is some string z such that exactly one of xz, yz is in L. Such a z is said to separate x from y with respect to L.] Suppose L is accepted by DFA M.

(a) Prove: if M is in the same state after reading x as it is after reading y, then x and y are equivalent with respect to L.

(b) Give an example showing that the converse of statement (1a) above is false.

(c) Prove: if there are k strings $\{x_1, \ldots, x_k\}$ no two of which are equivalent with respect to L, then M has at least k states. [Hint: pigeon hole principle.]

(d) In lecture I sketched a $2k + 2$ state DFA accepting the language $L_k = \{a^n b^n|1 \leq n \leq k\}$. Prove that any DFA accepting L_2 must have at least 6 states.

(e) [Extra Credit:] Prove that L_k requires at least $2k + 2$ states for each $k \geq 1$.

(f) [Extra Credit:] Extend the idea in part (c) to give another approach to proving that a given language is not regular. Use it to prove that $L = \{a^n b^n|1 \leq n\}$ is not regular.

2. 1.29b (1st ed.: not present)

3. 1.30 (1st ed.: 1.18)

4. Let $\Sigma = \{a, b\}$.

(a) Prove that $G = \{w \in \Sigma^*|w$ is a palindrome$\}$ is not regular.

(b) Prove that $F = \{w \in \Sigma^*|w$ is not a palindrome$\}$ is not regular. [Hint: see exercise 1.14 (1st ed.: 1.10).]

5. 1.54 (1st ed.: not present)