CSE 322: Midterm Review

✦ Basic Concepts (Chapter 0)
 ➗ Sets
 ● Notation and Definitions
 ● $A = \{x \mid \text{rule about } x\}$, $x \in A$, $A \subseteq B$, $A = B$
 ● \exists (“there exists”), \forall (“for all”)
 ● Finite and Infinite Sets
 ● Set of natural numbers N, integers Z, reals R etc.
 ● Empty set \emptyset
 ● Set operations: Know the definitions for proofs
 ● Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 ● Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 ● Complement $\overline{A} = \{x \mid x \notin A\}$

Basic Concepts (cont.)

✦ Set operations (cont.)
 ➗ Power set of $A = \text{Pow}(A)$ or $2^A = \text{set of all subsets of } A$
 ● E.g. $A = \{0,1\} \Rightarrow 2^A = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
 ➗ Cartesian Product $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$

✦ Functions:
 ➗ f: Domain \rightarrow Range
 ● $\text{Add}(x,y) = x + y \Rightarrow \text{Add}: Z \times Z \rightarrow Z$
 ➗ Definitions of 1-1 and onto (bijection if both)
Strings

✦ Alphabet $\Sigma = \text{finite set of symbols, e.g. } \Sigma = \{0, 1\}$

✦ String $w = \text{finite sequence of symbols } \in \Sigma$
 $w = w_1w_2\ldots w_n$

✦ String properties: Know the definitions
 $|w| = \text{Length of } w = |w| = n \text{ if } w = w_1w_2\ldots w_n$
 $\varepsilon = \text{Empty string } (\text{length of } \varepsilon = 0)$
 Substring of w
 $w^R = w_nw_{n-1}\ldots w_1$
 Concatenation of strings x and y (append y to x)
 $y^k = \text{concatenate } y \text{ to itself to get string of } k \text{ } y\text{'s}$
 Lexicographical order = order based on length and dictionary order within equal length

Languages and Proof Techniques

✦ Language $L = \text{set of strings over an alphabet } (\text{i.e. } L \subseteq \Sigma^*)$
 $\varepsilon. \text{ E.g. } L = \{0^n1^n \mid n \geq 0\} \text{ over } \Sigma = \{0, 1\}$
 $\varepsilon. \text{ E.g. } L = \{p \mid p \text{ is a syntactically correct C++ program}\} \text{ over } \Sigma = \text{ASCII characters}$

✦ Proof Techniques: Look at lecture slides, handouts, and notes
 1. Proof by counterexample
 2. Proof by contradiction
 3. Proof of set equalities (A = B)
 4. Proof of “iff” ($X \iff Y$) statements (prove both $X \implies Y$ and $X \iff Y$)
 5. Proof by construction
 6. Proof by induction
 7. Pigeonhole principle
 8. Dovetailing to prove a set is countably infinite E.g. Z or $N \times N$
 9. Diagonalization to prove a set is uncountable E.g. 2^N or Reals
Chapter 1 Review: Languages and Machines

Languages and Machines (Chapter 1)

✦ Language = set of strings over an alphabet
 ➔ Empty language = language with no strings = ∅
 ➔ Language containing only empty string = {ε}

✦ DFAs
 ➔ Formal definition M = (Q, Σ, δ, q₀, F)
 ➔ Set of states Q, alphabet Σ, start state q₀, accept (“final”) states F, transition function δ: Q × Σ → Q
 ➔ M recognizes language L(M) = {w | M accepts w}
 ➔ In class examples:
 E.g. DFA for L(M) = {w | w ends in 0}
 E.g. DFA for L(M) = {w | w does not contain 00}
 E.g. DFA for L(M) = {w | w contains an even # of 0’s}
 Try: DFA for L(M) = {w | w contains an even # of 0’s and an odd number of 1’s}
Languages and Machines (cont.)

✦ Regular Language = language recognized by a DFA

✦ Regular operations: Union ∪, Concatenation ○ and star *
  Know the definitions of A ∪ B, A ○ B and A*
  Σ = {0,1}  Σ* = {ε, 0 ,1, 00, 01, …}

✦ Regular languages are closed under the regular operations
  Means: If A and B are regular languages, we can show A ∪ B,
 A ○ B and A* (and also B*) are regular languages
  Cartesian product construction for showing A ∪ B is regular by
 simulating DFAs for A and B in parallel

✦ Other related operations: A ∩ B and complement A
  Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

✦ NFAs vs DFAs
  DFA: δ(state,symbol) = next state
  NFA: δ(state,symbol or ε) = set of next states
  Features: Missing outgoing edges for one or more symbols,
 multiple outgoing edges for same symbol, ε-edges
  Definition of: NFA N accepts a string w ∈ Σ*
  Definition of: NFA N recognizes a language L(N) ⊆ Σ*
  E.g. NFA for L = {w | w = x1a, x ∈ Σ* and a ∈ Σ}

✦ Regular expressions: Base cases ε, Ø, a ∈ Σ, and R1 ∪ R2,
 R1○R2 or R1*

✦ GNFAs = NFAs with edges labeled by regular expressions
  Used for converting NFAs/DFAs to regular expressions
Main Results and Proofs

✦ L is a Regular Language iff
 ➔ L is recognized by a DFA iff
 ➔ L is recognized by an NFA iff
 ➔ L is recognized by a GNFA iff
 ➔ L is described by a Regular Expression

✦ Proofs:
 ➔ NFA→DFA: subset construction (1 DFA state=subset of NFA states)
 ➔ DFA→GNFA→Reg Exp: Repeat two steps:
 1. Collapse two parallel edges to one edge labeled \((a \cup b)\), and
 2. Replace edges through a state with a loop with one edge labeled \((ab^*c)\)
 ➔ Reg Exp→NFA: combine NFAs for base cases with \(\varepsilon\)-transitions

Other Results

✦ Using NFAs to show that Regular Languages are closed under:
 ➔ Regular operations \(\cup, \cdot\) and \(*\)

✦ Are Regular Languages closed under:
 ➔ intersection?
 ➔ complement?

✦ Are there other operations that regular languages are closed under?
Other Results

Are Regular languages closed under:

- reversal?
- subset (⊆) ?
- superset (⊇) ?
- Prefix?
 Prefix(L) = \{w | w ∈ Σ* and wx ∈ L for some x ∈ Σ*\}
- NoExtend?
 NoExtend(L) = \{ w | w ∈ L but wx ∉ L for all x ∈ Σ* - {ε} \}
Pumping Lemma

✦ **Pumping lemma in plain English (sort of):** If \(L \) is regular, then there is a \(p (= \) number of states of a DFA accepting \(L \)) such that any string \(s \) in \(L \) of length \(\geq p \) can be expressed as \(s = xyz \) where \(y \) is not null (\(y \) is the loop in the DFA), \(|xy| \leq p \) (loop occurs within \(p \) state transitions), and any “pumped” string \(xy^iz \) is in \(L \) for all \(i \geq 0 \) (go through the loop 0 or more times).

✦ **Pumping lemma in plain Logic:**
\[
\text{L regular} \implies \exists p \text{ s.t. } (\forall s \in L \text{ s.t. } |s| \geq p (\exists x,y,z \in \Sigma^* \text{ s.t. } (s = xyz) \text{ and } (|y| \geq 1) \text{ and } (|xy| \leq p) \text{ and } (\forall i \geq 0, xy^iz \in L)))
\]

✦ Is the other direction \(\iff \) also true?

No! See Problem 1.54 (1.37 in 1st ed) for a counterexample

Proving Non-Regularity using the Pumping Lemma

✦ **Proof by contradiction to show \(L \) is not regular**
1. Assume \(L \) is regular. Then \(L \) must satisfy the P. Lemma.
2. Let \(p \) be the “pumping length”
3. **Choose a long enough string \(s \in L \) such that \(|s| \geq p \)**
4. Let \(x,y,z \) be strings such that \(s = xyz \), \(|y| \geq 1 \), and \(|xy| \leq p \)
5. **Pick an \(i \geq 0 \) such that \(xy^iz \notin L \) (for all possible \(x,y,z \) as in 4)**

This contradicts the P. lemma. Therefore, \(L \) is not regular

✦ **Examples:** \(\{0^n1^n | n \geq 0\} \), \(\{ww \mid w \in \Sigma^*\} \), \(\{0^m \mid m=n^2\} \), ADD = \(\{x=y+z \mid x, y, z \text{ are binary numbers and } x \text{ is sum of } y \text{ and } z\} \)

✦ Can sometimes also use closure under \(\cap \) (and/or complement)

\(\Rightarrow \) E.g. If \(L \cap B = L_1 \), and \(B \) is regular while \(L_1 \) is not regular, then \(L \) is also not regular (if \(L \) was regular, \(L_1 \) would be regular)
Some Applications of Regular Languages

✦ Pattern matching and searching:
 ➔ E.g. In Unix:
 ✦ `ls *.c`
 ✦ `cp /myfriends/games/*.* /mydir/`
 ✦ `grep 'Spock' *trek.txt`

✦ Compilers:
 ➔ `id ::= letter (letter | digit)*`
 ➔ `int ::= digit digit*`
 ➔ `float ::= d d*.d* (ε | E d d*)`
 ➔ The symbol | stands for “or” (= union)

Good luck on the midterm!

✦ You can bring one 8 1/2" x 11" review sheet (double-sided ok)

✦ The questions sheet will have space for answers. We will also bring extra blank sheets for those of you who don’t believe in brevity.

 Don’t sweat it!

• Go through the homeworks, lecture slides, and examples in the text (Chapters 0 and 1 only)
• Do the practice midterm on the website and avoid being surprised!