Turing Machines Review

- Turing Machine Basics
- Decidable versus Recognizable Languages
- An example of a decidable language that is not a CFL
 - Implementation-level description of a TM
 - State diagram of TM

Turing Machines

Just like a DFA except:
- You have an infinite “tape” memory (or scratchpad) on which you receive your input and on which you can do your calculations
- You can read one symbol at a time from a cell on the tape, write one symbol, then move the read/write pointer (head) left (L) or right (R)
Who was Turing?

✦ Alan Turing (1912-1954): one of the most brilliant mathematicians of the 20th century (one of the “founding fathers” of computing)
✦ Click on “Theory Hall of Fame” link on class web under “Lectures”
✦ Introduced the Turing machine as a formal model of what it means to compute and solve a problem (i.e. an “algorithm”)

How do Turing Machines compute?

✦ δ (current state, symbol under the head) = (next state, symbol to write over current symbol, direction of head movement)

Diagram shows: $\delta(q_1, 1) = (q_{\text{rej}}, 0, \text{L})$ (R = right, L = left)
✦ In terms of “Configurations”: $110q_110 \Rightarrow 11q_{\text{rej}}000$
On-Board Discussion of Turing-Recognizable versus Decidable Languages

How does a TM accept a string?
How can a TM reject a string?
What is a decider TM?

✦ We know \(L = \{0^n1^n0^n \mid n \geq 0\} \) is not a CFL (pumping lemma)
✦ Show \(L \) is decidable
 ➔ Construct a decider \(M \) such that \(L(M) = L \)
 ➔ A **decider** is a TM that always halts (in \(q_{acc} \) or \(q_{rej} \)) and is **guaranteed not to go into an infinite loop for any input**
Idea for a Decider for \(\{0^n1^n0^n \mid n \geq 0\} \)

- **General Idea:** Match each 0 with a 1 and a 0 following the 1.
- **Implementation Level Description** of a Decider for L:

 On input \(w \):
 1. If first symbol = blank, ACCEPT
 2. If first symbol = 1, REJECT
 3. If first symbol = 0, Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
 4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT

Try running the decider on:
- 010, 001100, … \(\rightarrow \) ACCEPT
- 0, 000, 0100, … \(\rightarrow \) REJECT
- What about 010010?
Houston, we have a problem…with our Turing machine.

What’s the problem?

- The decider accepts incorrect strings:
 - 010010, 010001100 \(\Rightarrow \) ACCEPT!!!
 - Accepts \((0^n1^n0^n)^*\)

Need to fix it…How??
A Simple Fix (to the Decider)

- Scan initially to make sure string is of the form 0*1*0*
- On input w:
 1. If first symbol = blank, ACCEPT
 2. If first symbol = 1, REJECT
 3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,
 Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1's/X’s until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
 4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT

The Decider TM for L in all its glory