Pushdown Automata (PDA)

✦ Main Idea: Add a stack to an NFA
 ✔ Stack provides potentially unlimited memory to an otherwise
 finite memory machine (finite memory = finite no. of states)

 ✔ PDA = NFA +

 ✔ Stack is LIFO (“Last In, First Out”)
 ✔ Two operations:
 ◦ “Push” symbol onto top of stack
 ◦ “Pop” symbol from top of stack

6 Components of a PDA = (Q, Σ, Γ, δ, q₀, F)

✦ Q = set of states
✦ Σ = input alphabet
✦ Γ = stack alphabet
✦ q₀ = start state
✦ F ⊆ Q = set of accept states
✦ Transition function δ: Q × Σ × Γ → Pow(Q × Γ)
 ✔ (current state, next input symbol, popped symbol) →
 {set of (next state, pushed symbol)}
 ✔ Input/popped/pushed symbol can be ε
When does a PDA accept a string?

✦ A PDA M accepts string $w = w_1 w_2 \ldots w_m$ if and only if there exists at least one accepting computational path i.e. a sequence of states r_0, r_1, \ldots, r_m and strings s_0, s_1, \ldots, s_m (denoting stack contents) such that:

1. $r_0 = q_0$ and $s_0 = \varepsilon$ \textit{(M starts in q_0 with empty stack)}
2. $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$ \textit{(States follow transition rules)}
3. $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_\varepsilon$ and $t \in \Gamma^*$ \textit{(M pops “a” from top of stack and pushes “b” onto stack)}
4. $r_m \in F$ \textit{(Last state in the sequence is an accept state)}

On-Board Examples

✦ PDA for $L = \{w#w^R| w \in \{0,1\}^*\}$ \textit{(\# acts as a “delimiter”)}
 \begin{itemize}
 \item E.g. $0\#0, 1\#1, 10\#01, 01\#10, 101\#1101 \in L$
 \item L is a CFL (what is a CFG for it?)
 \item Recognizing L using a PDA:
 \begin{itemize}
 \item Push each symbol of w onto stack
 \item On reaching $\#$ (middle of the input), pop the stack – this yields symbols in w^R – and compare to rest of input
 \end{itemize}
 \end{itemize}

✦ PDA for $L_1 = \{ww^R| w \in \{0,1\}^*\}$
 \begin{itemize}
 \item Set of all even length palindromes over $\{0,1\}$
 \item Recognizing L_1 using a PDA:
 \begin{itemize}
 \item Problem: Don’t know the middle of input string
 \item Solution: Use nondeterminism (ε-transition) to guess!
 \end{itemize}
 \end{itemize}