The language A_{TM}

- Consider the language:

 $A_{\text{TM}} = \{<M,w> \mid M \text{ is a TM and } M \text{ accepts } w\}$

 - NOTE: $<A,B,...>$ is just a string encoding the objects A, B, ...
 - In particular, $<M,w>$ is a string listing the components of TM M
 followed by the string w
 - Given input $<M,w>$, it should be easy to extract the info about
 M and to simulate M on w (try writing a TM to do this!)

- What can we say about A_{TM}?

A_{TM} is Turing-recognizable

- A_{TM} is Turing-recognizable: Recognizer TM U for A_{TM}:

 On input string $<M,w>$:

 - Simulate M on w.
 - ACCEPT $<M,w>$ if M halts & accepts w;
 - REJECT $<M,w>$ if M halts & rejects
 (Loop (& thus reject $<M,w>$) if M ends up looping).

 U accepts $<M,w>$ iff M accepts w, i.e. $L(U) = A_{\text{TM}}$

 "Universal" TM (can simulate any TM)

Yeah, but is it decidable?!!
Is A_{TM} decidable?

† No! $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable! 1-slide Proof (by Contradiction):

1. Assume A_{TM} is decidable \Rightarrow there’s a decider H, $L(H) = A_{TM}$
2. H on $<M, w> = \text{ACC}$ if M accepts w
 REJ if M rejects w (by halting in q_{REJ} or looping)
3. Construct new TM D: On input $<M>$:
 - Simulate H on $<M, <M>>$ (here, $w = <M>$)
 - If H accepts, then REJ input $<M>$
 - If H rejects, then ACC input $<M>$
4. What happens when D gets $<D>$ as input?
 - D rejects $<D>$ if H accepts $<D, <D>>$ if D accepts $<D>$
 - D accepts $<D>$ if H rejects $<D, <D>>$ if D rejects $<D>$

Either way: Contradiction! D cannot exist

Therefore, A_{TM} is not a decidable language.

Undecidability Proof uses Diagonalization

D outputs opposite of diagonal

If H exists

D on $<M_i>$ accepts if and only if M_i on $<M_i>$ rejects.
So, D on $<D>$ will accept if and only if D on $<D>$ rejects!
A contradiction \Rightarrow H cannot exist!
Therefore, A_{TM} is not a decidable language.
One Last Concept: Reducibility

✦ How do we show a new problem B is undecidable?

✦ Idea: Show that \(A_{TM} \) is reducible to the new problem B

 \(\Rightarrow \) What does this mean and how do we show this?

✦ Show that if B was decidable, then you can use the decider for B as a subroutine to decide \(A_{TM} \)

 \(\Rightarrow \) Contradiction, therefore B must also be undecidable

The Halting Problem is Undecidable (Turing, 1936)

✦ Example: Halting Problem: Does TM M halt on input w?

 \(\Rightarrow \) Equivalent language: \(A_{H} = \{ <M,w> \mid \text{TM M halts on input w} \} \)

 \(\Rightarrow \) Need to show \(A_{H} \) is undecidable

 \(\Rightarrow \) We know \(A_{TM} = \{ <M,w> \mid \text{TM M accepts w} \} \) is undecidable

✦ Show \(A_{TM} \) is reducible to \(A_{H} \) (Theorem 5.1 in text)

 \(\Rightarrow \) Suppose \(A_{H} \) is decidable \(\Rightarrow \) there’s a decider \(M_{H} \) for \(A_{H} \)

 \(\Rightarrow \) Then, we can construct a decider \(D_{TM} \) for \(A_{TM} \):

 On input \(<M,w> \), run \(M_{H} \) on \(<M,w> \).

 ● If \(M_{H} \) rejects, then REJ (this takes care of M looping on w)

 ● If \(M_{H} \) accepts, then simulate M on w until M halts

 ● If M accepts, then ACC input \(<M,w> \); else REJ

 \(L(D_{TM}) = A_{TM} \Rightarrow A_{TM} \) is decidable! Contradiction \(\Rightarrow A_{H} \) is undecidable

✦ E.g. 2: Show \(E_{TM} = \{ <M> \mid \text{M is a TM and } L(M) = \emptyset \} \) is undecidable

 (Theorem 5.2 in text)