Recap: Recognizable versus Decidable Languages

- A language L is called **Turing-Recognizable** if there exists a TM M such that $L(M) = L$
 - Note: M need not halt on all inputs but it should halt and accept all and only those strings that are in L; it can reject strings by either going to q_{rej} or by looping forever
- A TM is a **decider** if it halts on all inputs
- A language L is **decidable** if there exists a **decider** D such that $L(D) = L$

Closure Properties of Decidable Languages

- Decidable languages are closed under \cup, \circ, \ast, \cap, and complement
- Example: Closure under \cup
- Need to show that union of 2 decidable L’s is also decidable
 Let M_1 be a decider for L_1 and M_2 a decider for L_2
 A decider M for $L_1 \cup L_2$:
 On input w:
 1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)
 2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.
 M accepts w iff M_1 accepts w OR M_2 accepts w
 i.e. $L(M) = L_1 \cup L_2$
Closure Properties

✦ Consider the proof for closure under \cup

A decider M for $L_1 \cup L_2$:

On input w:
1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)
2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.

M accepts w iff M_1 accepts w OR M_2 accepts w

i.e. $L(M) = L_1 \cup L_2$

Will this proof work for showing Turing-recognizable languages are closed under \cup? Why/Why not?

Uh…I dunno. Wait, will M_1 always halt?!

Closure for Recognizable Languages

✦ Turing-Recognizable languages are closed under \cup, \circ, \ast, and \cap (but not complement! We will see this later)

✦ Example: Closure under \cap

Let M_1 be a TM for L_1 and M_2 a TM for L_2 (both may loop)

A TM M for $L_1 \cap L_2$:

On input w:
1. Simulate M_1 on w. If M_1 halts and accepts w, go to step 2. If M_1 halts and rejects w, then REJECT w. (If M_1 loops, then M will also loop and thus reject w)
2. Simulate M_2 on w. If M_2 halts and accepts, ACCEPT w. If M_2 halts and rejects, then REJECT w. (If M_2 loops, then M will also loop and thus reject w)

M accepts w iff M_1 accepts w AND M_2 accepts w i.e. $L(M) = L_1 \cap L_2$
Suppose you want a decider TM for deciding whether a DFA D accepts an input string w

How do we encode a given DFA D as input to a TM?

How does the TM decide if D accepts a given w?

(On-board solution: binary encoding of DFA/CFG/TM and three-tape decider TM)