Pumping Lemma

Atri Rudra
May 17

1. (d) on H/W #6
- Should read exactly one extra (Problem say one extra)

Last lecture
- Converting PDAs to CFG
- Given \(M = (Q, \Sigma, \Gamma, \delta, s, \{f\}) \)
- Build a \(G = (V, \Sigma, R, A_s) \)
 - \(V = \{ A_{pq} | p, q \in Q \} \)
- Three kinds of rules
 - For every \(p, q, r, s \in Q, t \in \Gamma, a, b \in \Sigma \cup \{\epsilon\} \), if
 \[
 a \cdot x \rightarrow t
 \]
 \[
 s \xrightarrow{b, t} \epsilon
 \]
 - then add the rule \(A_{pq} \rightarrow aA_{rs}b \)

The other rules
- For every \(p, q, r \in Q \)
 - \(A_{pq} \rightarrow A_pA_{rq} \)
- For every \(p \in Q \)
 - \(A_{pp} \rightarrow \epsilon \)
- Recall \(A_{pq} \Rightarrow^* w \) "signifies" the following:
 \[
 \text{p.} \quad \text{w} \quad \text{q.}
 \]
Idea (hope?) behind the rules

- \[A_{pq} \rightarrow aA_{rs}b \]
- \[\mathcal{L} \]

Why does this work?

- We need a proof...

- Today briefly sketch one direction
- If \[A_{pq} \] generates a string then
- \[\mathcal{L} \]
- See Claim 2.30, 2.31 in Sipser (Pgs 121-122)
- Formal proof by induction for both directions

The induction hypothesis

- For any \(p,q \in \mathcal{Q} \), if \(A_{pq} \Rightarrow^* w \) in \(\leq k \) steps then
- \[\mathcal{L} \]
- Inductive step: \(A_{pq} \Rightarrow^* w \) in \(k+1 \) steps
 - The derivation has to look like either
 - \(A_{pq} \rightarrow aA_{rs}b \Rightarrow^* ayb=w \), or
 - \(A_{pq} \rightarrow A_{pr}A_{rq} \Rightarrow^* yz=w \)

Case 1: \(A_{pq} \rightarrow aA_{rs}b \Rightarrow^* ayb=w \)

- \(A_{rs} \Rightarrow^* y \) takes \(k \) steps
 - By induction hypothesis
 - This also implies

\[\mathcal{L} \]

\[\mathcal{L} \]
Case 2: $A_{pq} \rightarrow A_{pr} A_{rq} \Rightarrow^* yz = w$

- By induction

 $p, \overset{y}{\cdots} r, \overset{z}{\cdots} q$

- Thus,

 $p, \cdots r, \cdots q$

Questions?

Up next: Ms. PDA finds out her limits

And we will see our friend…

(Another) pumping lemma