Converting PDAs to CFGs

Atri Rudra

May 15

Announcements

- Handout
 - "Bottom-Up" parsing
 - Example of PDA to CFG conversion
 - H/W #6 if you did not pick up one last class
- No puzzle today

Last lecture

- Converting CFGs into PDAs
- A “shorthand”

PDA for a grammar $G = \langle V, \Sigma, R, S \rangle$

An example

- $S \rightarrow 0S1 | \epsilon$

An accepting path for 0011

- 0011
An accepting path for 0011

A → B → C → D → E → S

ε, ε → S
ε, S → ε, 0, 0 → ε, 1, 1 → ε

A → B → C → D → E → S

ε, ε → S
ε, S → ε, 0, 0 → ε, 1, 1 → ε

A → B → C → D → E → S

ε, ε → S
ε, S → ε, 0, 0 → ε, 1, 1 → ε

A → B → C → D → E → S

ε, ε → S
ε, S → ε, 0, 0 → ε, 1, 1 → ε

A → B → C → D → E → S

ε, ε → S
ε, S → ε, 0, 0 → ε, 1, 1 → ε

A → B → C → D → E → S

ε, ε → S
ε, S → ε, 0, 0 → ε, 1, 1 → ε
Questions?

Top-down vs Bottom-up parsing
- What we have seen is top-down parsing
 - Start from S and get to the string
- Bottom-up parsing
 - Start from the string and get S
 - “Reverse” derivation
 - See the handout for details

So we have shown

Up next…
- Converting PDAs to CFGs

Proof of correctness
- We won’t have time to go through all of the proof
- Reading Assignment:
 - Read from Sipser
 - Claim 2.30, 2.31 in Sipser, Pgs 121-122.