

DFA Minimization

Atri Rudra

April 28

Announcements

- Turn in H/W #4
- Handouts
 - Midterm exam topics list
 - Sample Midterm 1
 - Sample Midterm 2
 - Feedback Form
 - Solutions to H/W #3
 - If you did not pick up one last time
- No homework this week

Puzzle

- Use Myhill-Nerode theorem to prove that the following language is not regular:

 \[L = \{ 0^n | n \text{ is prime} \} \]

The equivalence relation \(\equiv_A \)

- Let \(A \) be a language
- Given \(\equiv_A \), we know how to build minimized DFA for \(A \)
- Recall
 - For strings \(x \) and \(y \), \(x \equiv_A y \) iff
 - For all strings \(z \), either both \(xz \) and \(yz \) are in \(A \) or both are not in \(A \)

The equivalence relation \(\equiv_M \)

- Given DFA \(M \)
- Recall
 - String \(x \) and \(y \), \(x \equiv_M y \) iff
 - \(x \) and \(y \) end up in the same state in \(M \)
- Each equivalence class corresponds to a state
- Assume all states in \(M \) are reachable from the start state

Relationship between \(\equiv_A \) and \(\equiv_M \)

- Let \(M \) be such that \(A = L(M) \)
- If \(x \equiv_M y \) then \(x \equiv_A y \)
- An eqv class in \(\equiv_A \) is the union of eqv classes in \(\equiv_M \)
Basic idea

- In the minimized DFA, every state corresponds to an eqv. class in \(\equiv_A \)
- But we only know \(\equiv_M \)
- Group states in M to get states corresponding to \(\equiv_A \)

When should we group states?

- Given two states \(p \) and \(q \), when should we group them?
- When \(x \equiv_A y \)
- If for all strings \(z \), either
 - Both \(p \) and \(q \) go to a final state, or
 - Both go to a non-final state

In other words…

- For all strings \(z \), of length 0
 - Both \(p \) and \(q \) are final states or both are not
- For all strings \(z \), of length 1
 - Both \(p \) and \(q \) are final states or both are not
- For all strings \(z \), of length 2 …

Putting it together…

- Group \(p \) and \(q \) together, if
 - For all \(i \geq 0 \)
 - For all strings \(z \) of length \(i \), both \(p \) and \(q \) are in either final states or not
- Do not group \(p \) and \(q \), if
 - There exist an \(i \geq 0 \)
 - Exists a string \(z \) of length \(i \) that takes \(p \) to a final state but not \(q \) (or vice versa)

Stating it more formally

- \(p \equiv q \) if
 - For all strings \(z \) of length at most \(i \), either both \(p \) and \(q \) reach final state or neither does
- Thus, group \(p \) and \(q \) if
 - \(p \equiv q \) for all \(i \geq 0 \)
- Do not group \(p \) and \(q \) if
 - \(p \equiv q \) for some \(i \geq 0 \)

Questions?
The procedure

- We will decide in a top down manner
- First group all states together

- Separate the states that are not equivalent under \equiv_0
- Separate the states that are not equivalent under \equiv_1
- And so on…

And so on till when?

What we need…

- The process needs to terminate
- At termination, all grouped states belong to the same eqv class in \equiv_A
- Any two state in different groups must be in different eqv classes in \equiv_A