
CSE 322
Introduction to Formal Models in Computer Science

Myhill-Nerode Theorem

DEFINITION Let A be any language over Σ∗. We say that strings x and y in Σ∗ are indistinguish-
able by A iff for every string z ∈ Σ∗ either both xz and yz are in A or both xz and yz are not in A.
We write x ≡A y in this case.

Note that ≡A is an equivalence relation. (Check this yourself.)

DEFINITION Given a DFA M = (Q, Σ, δ, s, F ), we define δ∗(s, w) to be the state reached by
M on input w. Further, we say that two strings x and y in Σ∗ are indistinguishable by M iff
δ∗(s, x) = δ∗(s, y), i.e. the state reached by M on input x is the same as the state reached by M
on input y. We write x ≡M y in this case.

Note that ≡M is an equivalence relation and that it only has a finite number of equivalence
classes, one per state. In fact, the equivalence classes of ≡M are precisely the sets of inputs that
you would have used to document the states of M (like problem 5 in H/W#1).

Lemma 1 If A = L(M) for a DFA M then for any x, y ∈ Σ∗ if x ≡M y then x ≡A y.

Proof Suppose that A = L(M). Therefore w ∈ A ⇔ δ∗(s, w) ∈ F . Suppose also that x ≡M y.
Then δ∗(s, x) = δ∗(s, y).

Let z ∈ Σ∗. Clearly δ∗(s, xz) = δ∗(s, yz). Therefore

xz ∈ A ⇔ δ∗(s, xz) ∈ F

⇔ δ∗(s, yz) ∈ F

⇔ yz ∈ A

It follows that x ≡A y.

This lemma says that whenever two elements arrive at the same state of M they are in the same
equivalence class of ≡A. This means that each equivalence class of ≡A is a union of equivalence
classes of ≡M .

Corollary 2 If A is regular then ≡A has a finite number of equivalence classes.

Proof Let M be a DFA such that A = L(M). The Lemma shows that ≡A has at most as many
equivalence classes as ≡M , which has a finite number of equivalence classes (equal to the number
of states of M ).

We now get another way of proving that languages are not regular, namely given A find an
infinite sequence of strings x1, x2, . . . and prove that they are not equivalent to each other with
respect to ≡A.

1



Claim 3 A = {0n1n : n ≥ 0} is not regular.

Proof Consider the sequence of strings x1, x2, . . . where xi = 0i for i ≥ 1. We now see that no
two of these are equivalent to each other with respect to ≡A: Consider xi = 0i and xj = 0j for
i 6= j. Let z = 1i and notice that xiz = 0i1i ∈ A but xjz = 0j1i /∈ A. Therefore no two of these
strings are equivalent to each other and thus A cannot be regular.

One nice thing about this method for proving things nonregular is that, unlike the pumping
lemma, it is always guaranteed to work because the corollary above is a precise characterization of
the regular languages. The statement of this fact is known as the Myhill-Nerode Theorem after the
two people who first proved it.

Theorem 4 (Myhill-Nerode Theorem) A is regular if and only if≡A has a finite number of equiv-
alences classes. Furthermore there is a DFA M with L(M) = A having precisely one state for
each equivalence class of ≡A.

Proof The corollary above already gives one direction of this statement. All we now need to
show is that if ≡A has a finite number of equivalence classes then we can build a DFA M =
(Q, Σ, δ, s, F ) accepting A where there is one state in Q for each equivalence class of ≡A. Here is
how it goes:

Let A1, . . . , Ar be the equivalence classes of ≡A. Remember that the Ai are disjoint and their
union is all of Σ∗. Define Q = {1, . . . , r}. Our goal will be to define the machine M so that
δ∗(s, x) = j ⇔ x ∈ Aj .

Let s ∈ Q be the one i such that ε ∈ Ai.

Note that for any Aj and any a ∈ Σ, for every x, y ∈ Aj , xa and ya will both be contained in
the same equivalence class of ≡A. (For any z ∈ Σ∗, xaz ∈ A ⇔ yaz ∈ A since x and y are in the
same equivalence class of ≡A.)

To figure out what δ(j, a) should be, all we do is pick some x ∈ Aj , find the one k such that
xa ∈ Ak and set δ(j, a) = k. The answer will be the same no matter which x we choose.

To pick the final states, note that for each j, either Aj ⊂ A or Aj ∩ A = ∅. Therefore we let
F = {j | Aj ⊆ A}.

It is easy to argue by induction that δ∗(s, x) = j ⇔ x ∈ Aj . This, together with the choice of
F ensures that L(M) = A.

By the proof of the corollary above we know that the number of states of M constructed above
is the smallest possible. (In fact, if one looks at things carefully one can see that all DFA’s of that
size for A have to look the same except for the names of the states.)

However, in general, even though A is a regular language we may not have a nice description
of ≡A at our disposal in order to build M . What happens if all we have is some DFA accepting A?
That’s the subject of the next handout, Minimizing DFAs.

2


