1. Consider the DFA $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_0\})$, with the transition function: for $i = 0, 1, 2$, $\delta(q_i, 0) = q_{(2i \mod 3)}$ and $\delta(q_i, 1) = q_{((2i+1) \mod 3)}$.

 (a) Let A be the language that M recognizes. Can you give a simple description of A?

 (b) Use the finite automaton to regular expression conversion procedure we discussed in class to obtain a regular expression describing the language A.

2. For each pair of regular expressions below, prove that they describe the same regular language:

 (a) $(0^*1)^*0^*$ and $(0 \cup 1)^*$

 (b) $(01 \cup 0)^*0$ and $0(10 \cup 0)^*$

3. Consider a new kind of finite automaton called an all-paths-NFA. An all-paths-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ just like an NFA. The only difference is in the acceptance criterion: an all-paths-NFA accepts a string $x \in \Sigma^*$ if every possible computation of M on x ends in a state from F that accepts $x \in \Sigma^*$. (Note, in contrast, that an ordinary NFA accepts a string if some computation ends in an accept state.)

 (a) Argue that L is a regular language if and only if L is recognized by an all-paths-NFA.

 (b) Use part (a) to show that the set of regular languages is closed under intersection. That is, prove that if A, B are regular languages, then so is $A \cap B$.

 (c) Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA that recognizes language A. Let $N_{\text{flip}} = (Q, \Sigma, \delta, q_0, F')$ be the all-paths-NFA defined by taking $F' = Q - F$, and let A_{flip} be the language recognized by N_{flip}. How are A and A_{flip} related? Briefly justify your answer.

4. Show that the following languages are not regular. Please structure and write your arguments as clearly as possible.

 (a) $L_1 = \{0^i1^j \mid i, j \geq 0 \text{ and } i \neq j\}$

 (b) $L_2 = \{w \in \{0, 1\}^* \mid w \text{ is a palindrome}\}$. (A palindrome is a string which reads the same forward and backward.)

5. Define the language

 $$A = \{a^ib^jc^k \mid i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k\}.$$

 (a) Show that A satisfies the three conditions of the pumping lemma, namely show that there exists $p \geq 1$ such that every $w \in A$, $|w| \geq p$, can be rewritten as $w = xyz$, $|xy| \leq p$, $y \neq \epsilon$, such that $xy^iz \in A$ for every $i \geq 0$.

Each question is worth **12 points**, except the Extra Credit problem which is worth 10 points.
(b) Is L regular? Why or why not? If not, why doesn’t this contradict the pumping lemma?

6. * (Extra Credit) Let r and s be regular expressions where the language represented by r does not contain the empty string ϵ. Consider the equation $X = r \circ X \cup s$ (where \circ stands for concatenation of regular expressions, and \cup for union) with unknown variable X. Find a solution (namely, a regular expression) for X that satisfies the above equation and prove that this solution is unique.