CSE 322: Formal Methods in Computer Science Winter 2005 Sample Midterm

- 1. (15 points) For each of the following statements, answer whether they are True or False by circling the appropriate choice. You do *not* need to justify your answer.
 - (a) If $A \neq B \neq C$ are languages such that $A \cap B = C$ and B, C are both regular, then A must also be regular.
 - (b) If L is regular, then so is the language $\{xy \mid x \in L, y \notin L\}$.
 - (c) If L is regular, the minimum state DFAs for both L and \overline{L} have the same number of states.
 - (d) $b^*a^* \cap a^*b^* = a^* \cup b^*$
 - (e) The minimum state DFA for the language $\{w \in \{a, b\}^* \mid w \text{ contains } abaab \text{ as a substring}\}$ has more than 6 states.
- 2. (30 points) Define the language $A = \{w \in \{0,1\}^* \mid \text{the number of 0's minus the number of 1's in } w \text{ is divisible by 3}\}.$
 - (a) Construct a DFA with only three states that recognizes A.
 - (b) Prove that your DFA from Part (a) is optimal, i.e. three states are the minimum needed to recognize A.
 - (c) Using the state elimination procedure described in class or otherwise, write down a regular expression that generates the language A.
- 3. (20 points) Using the pumping lemma for regular languages, prove that the language

$$\{a^n b a^m b a^{m+n} \mid n, m \ge 1\}$$

is not regular.

- 4. (15 points) Prove or disprove: If $B \subseteq \{0,1\}^*$ is a regular language, then the language $C = \{x \in B \mid x \text{ does not contain 1101 as a substring}\}$ is also regular.
- 5. (20 points) Design a context-free grammar for the language $\{0^i 1^j \mid j > i \ge 1\}$. Draw a parse tree for your grammar that derives the string $0^3 1^4$. Is this parse tree uniquely determined for your grammar?