CSE 322: Midterm Review

✦ Basic Concepts (Chapter 0)

✦ Sets

● Notation and Definitions
 ● A = \{x \mid \text{rule about } x\}, x \in A, A \subseteq B, A = B
 ● \exists ("there exists"), \forall ("for all")

● Finite and Infinite Sets
 ● Set of natural numbers N, integers Z, reals R etc.
 ● Empty set \emptyset

● Set operations: Know the definitions for proofs
 ● Union: A \cup B = \{x \mid x \in A \text{ or } x \in B\}
 ● Intersection A \cap B = \{x \mid x \in A \text{ and } x \in B\}
 ● Complement \overline{A} = \{x \mid x \notin A\}

Basic Concepts (cont.)

✦ Set operations (cont.)

● Power set of A = \text{Pow}(A) or 2^A = \text{set of all subsets of } A
 ● E.g. A = \{0,1\} \rightarrow 2^A = \emptyset, \{0\}, \{1\}, \{0,1\}
 ● Cartesian Product A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}

✦ Functions:

● f: Domain \rightarrow Range
 ● Add(x,y) = x + y \rightarrow \text{Add: } Z \times Z \rightarrow Z
 ● Definitions of 1-1 and onto (bijection if both)
Strings

- Alphabet \(\Sigma \) = finite set of symbols, e.g. \(\Sigma = \{0,1\} \)
- String \(w \) = finite sequence of symbols \(\in \Sigma \)
 - \(w = w_1w_2\ldots w_n \)
- String properties: Know the definitions
 - Length of \(w \) = \(|w| \) (\(|w| = n \) if \(w = w_1w_2\ldots w_n \))
 - Empty string = \(\epsilon \) (length of \(\epsilon = 0 \))
 - Substring of \(w \)
 - Reverse of \(w = w_R = w_nw_{n-1}\ldots w_1 \)
 - Concatenation of strings \(x \) and \(y \) (append \(y \) to \(x \))
 - \(y^k \) = concatenate \(y \) to itself to get string of \(k \) \(y \)'s
 - Lexicographical order = order based on length and dictionary order within equal length

Languages and Proof Techniques

- Language \(L \) = set of strings over an alphabet (i.e. \(L \subseteq \Sigma^* \))
 - E.g. \(L = \{0^n1^n \mid n \geq 0\} \) over \(\Sigma = \{0,1\} \)
 - E.g. \(L = \{p \mid p \) is a syntactically correct C++ program\} over \(\Sigma \) = ASCII characters
- Proof Techniques: Look at lecture slides, handouts, and notes
 1. Proof by counterexample
 2. Proof by contradiction
 3. Proof of set equalities (\(A = B \))
 4. Proof of “iff” (\(X \iff Y \)) statements (prove both \(X \Rightarrow Y \) and \(X \Leftarrow Y \))
 5. Proof by construction
 6. Proof by induction
 7. Pigeonhole principle
 8. Dovetailing to prove a set is countably infinite E.g. \(Z \) or \(N \times N \)
 9. Diagonalization to prove a set is uncountable E.g. \(2^N \) or Reals
Languages and Machines (Chapter 1)

- **Language** = set of strings over an alphabet
 - Empty language = language with no strings = ∅
 - Language containing only empty string = \{ε\}

- **DFAs**
 - Formal definition \(M = (Q, \Sigma, δ, q_0, F)\)
 - Set of states \(Q\), alphabet \(\Sigma\), start state \(q_0\), accept (“final”) states \(F\), transition function \(δ: Q \times Σ \rightarrow Q\)
 - \(M\) recognizes language \(L(M) = \{w | M\) accepts \(w\}\)
 - In class examples:
 - E.g. DFA for \(L(M) = \{w | w\) ends in 0\}
 - E.g. DFA for \(L(M) = \{w | w\) does not contain 00\}
 - E.g. DFA for \(L(M) = \{w | w\) contains an even # of 0’s\}
 - Try: DFA for \(L(M) = \{w | w\) contains an even # of 0’s and an odd number of 1’s\}
Languages and Machines (cont.)

✦ Regular Language = language recognized by a DFA
✦ Regular operations: Union \(\cup \), Concatenation \(\circ \) and star \(* \)
 ➔ Know the definitions of \(A \cup B \), \(A \circ B \) and \(A^* \)
 ➔ \(\Sigma = \{0,1\} \rightarrow \Sigma^* = \{\varepsilon, 0, 1, 00, 01, \ldots\} \)
✦ Regular languages are closed under the regular operations
 ➔ Means: If \(A \) and \(B \) are regular languages, we can show \(A \cup B \), \(A \circ B \) and \(A^* \) (and also \(B^* \)) are regular languages
 ➔ Cartesian product construction for showing \(A \cup B \) is regular by simulating DFAs for \(A \) and \(B \) in parallel
✦ Other related operations: \(A \cap B \) and complement \(\overline{A} \)
 ➔ Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

✦ NFAs vs DFAs
 ➔ DFA: \(\delta(\text{state}, \text{symbol}) = \text{next state} \)
 ➔ NFA: \(\delta(\text{state}, \text{symbol} \text{ or } \varepsilon) = \text{set of next states} \)
 ➔ Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, \(\varepsilon \)-edges
 ➔ Definition of: NFA \(N \) accepts a string \(w \in \Sigma^* \)
 ➔ Definition of: NFA \(N \) recognizes a language \(L(N) \subseteq \Sigma^* \)
 ➔ E.g. NFA for \(L = \{w \mid w = x1a, x \in \Sigma^* \text{ and } a \in \Sigma\} \)
✦ Regular expressions: Base cases \(\varepsilon, \emptyset, a \in \Sigma \), and \(R1 \cup R2, R1 \circ R2 \) or \(R1^* \)
✦ GNFAs = NFAs with edges labeled by regular expressions
 ➔ Used for converting NFAs/DFAs to regular expressions
Main Results and Proofs

- L is a Regular Language iff
 - L is recognized by a DFA iff
 - L is recognized by an NFA iff
 - L is recognized by a GNFA iff
 - L is described by a Regular Expression

- Proofs:
 - NFA → DFA: subset construction (1 DFA state = subset of NFA states)
 - DFA → GNFA → Reg Exp: Repeat two steps:
 1. Collapse two parallel edges to one edge labeled \((a \cup b)\), and
 2. Replace edges through a state with a loop with one edge labeled \((ab^*c)\)
 - Reg Exp → NFA: combine NFAs for base cases with \(\epsilon\)-transitions

Other Results

- Using NFAs to show that Regular Languages are closed under:
 - Regular operations \(\cup\), \(\cdot\) and \(*\)

- Are Regular Languages closed under:
 - intersection?
 - complement (Exercise 1.10)?

- Are there other operations that regular languages are closed under?
What about the reversal operation?

What about the \textit{icannotact} operation?

What about the subset operation?

Other Results

- Are Regular languages closed under:
 - reversal?
 - subset \subseteq ?
 - superset \supseteq ?
 - MAX?
 \[
 \text{MAX}(L) = \{ w \in L \mid w \text{ is not a proper prefix of any string in } L \}\]
Pumping Lemma

- **Pumping lemma in plain English (sort of):** If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length $\geq p$ can be expressed as $s = xyz$ where y is not null (y is the loop in the DFA), $|xy| \leq p$ (loop occurs within p state transitions), and any “pumped” string xy^iz is in L for all $i \geq 0$ (go through the loop 0 or more times).

- **Pumping lemma in plain Logic:**

 L regular $\Rightarrow \exists p$ s.t. ($\forall s \in L$ s.t. $|s| \geq p$ ($\exists x,y,z \in \Sigma^*$ s.t. ($s = xyz$) and ($|y| \geq 1$) and ($|xy| \leq p$) and ($\forall i \geq 0$, $xy^iz \in L$)))

- Is the other direction \Leftarrow also true?

 No! See Problem 1.37 for a counterexample

Proving Non-Regularity using the Pumping Lemma

- Proof by contradiction to show L is not regular
 1. Assume L is regular
 2. Let p be some arbitrary number (“pumping length”)
 3. Choose a long enough string $s \in L$ such that $|s| \geq p$
 4. Let x,y,z be strings such that $s = xyz$, $|y| \geq 1$, and $|xy| \leq p$
 5. Pick an $i \geq 0$ such that $xy^iz \notin L$ (for all x,y,z as in 4)

 This contradicts the pump. lemma. Therefore, L is not regular

- Examples: $\{0^n1^n|n \geq 0\}$, $\{ww| w \in \Sigma^*\}$, $\{0^n|n$ is prime$\}$, ADD = $\{x=y+z | x, y, z$ are binary numbers and x is sum of y and z\}

- Can sometimes also use closure under \cap (and/or complement)

 E.g. If $L \cap B = L_1$, and B is regular while L_1 is not regular, then L is not regular (if L was regular, L_1 would have to be regular)
Some Applications of Regular Languages

✦ Pattern matching and searching:
 ➤ E.g. In Unix:
 ♦ `ls *.c`
 ♦ `cp /myfriends/games/**.* /mydir/`
 ♦ `grep 'Spock' *trek.txt`

✦ Compilers:
 ➤ `id ::= letter (letter | digit)*`
 ➤ `int ::= digit digit*`
 ➤ `float ::= d d*.d* (ε | E d d*)`
 ➤ The symbol | stands for “or” (= union)

Good luck on the midterm on monday!

✦ You can bring one 8 1/2" x 11" review sheet
✦ The questions sheet will have space for answers. We will also bring extra blank sheets for those of you who balk at brevity.

 Don’t sweat it!

• Go through the homeworks, lecture slides, and examples in the text (Chapters 0 and 1 only)
• Do the practice midterm on the website and avoid being surprised!