
1R. Rao, CSE 322

Closure Properties of Decidable Languages

✦ Decidable languages are closed under ∪ , °, *, ∩, and
complement

✦ Example: Closure under ∪
✦ Need to show that union of 2 decidable L’s is also decidable

Let M1 be a decider for L1 and M2 a decider for L2
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

2R. Rao, CSE 322

Closure Properties

✦ Consider the proof for closure under ∪
A decider M for L1 ∪ L2:

On input w:
1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise,

go to step 2 (because M1 has halted and rejected w)
2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.

M accepts w iff M1 accepts w OR M2 accepts w
i.e. L(M) = L1 ∪ L2

Will this proof work for showing Turing-recognizable
languages are closed under ∪ ? Why/Why not?

Uh…I dunno.
Wait, will M1
always halt?!

3R. Rao, CSE 322

Closure for Recognizable Languages

✦ Turing-Recognizable languages are closed under ∪ , °, *, and ∩
(but not complement! We will see this in the final lecture)

✦ Example: Closure under ∩
Let M1 be a TM for L1 and M2 a TM for L2 (both may loop)
A TM M for L1 ∩ L2:

On input w:
1. Simulate M1 on w. If M1 halts and accepts w, go to step 2. If

M1 halts and rejects w, then REJECT w. (If M1 loops, then M
will also loop and thus reject w)

2. Simulate M2 on w. If M2 halts and accepts, ACCEPT w. If M2
halts and rejects, then REJECT w. (If M2 loops, then M
will also loop and thus reject w)

M accepts w iff M1 accepts w AND M2 accepts w i.e. L(M) = L1∩L2

4R. Rao, CSE 322

The Church-Turing Thesis

✦ Various definitions of “algorithms” were shown to be
equivalent in the 1930s

✦ Church-Turing Thesis: “The intuitive notion of algorithms
equals Turing machine algorithms”

Turing machines serve as a precise formal model for the
intuitive notion of an algorithm

✦ “Any computation on a digital computer is equivalent to
computation in a Turing machine”

Dude, that’s
pretty deep…

5R. Rao, CSE 322

Undecidable Languages

✦ The Question: Are there languages that are not decidable by
any Turing machine (TM)?

i.e. Are there problems that cannot be solved by any algorithm?

✦ Consider the language:
ATM = {<M,w> | M is a TM and M accepts w}

NOTE: <A,B,…> is just a string encoding the objects A, B, …
In particular, <M,w> is a string listing all the components of TM
M (separated by #, for example) followed by the string w
Given input <M,w>, it should be easy to extract the info about
M and to simulate M on w (try writing a TM to do this!)

✦ What can we say about ATM?

6R. Rao, CSE 322

ATM is Turing-recognizable

✦ ATM is Turing-recognizable: Recognizer TM U for ATM:
On input string <M,w>:

Simulate M on w.
ACCEPT <M,w> if M halts & accepts w;
REJECT <M,w> if M halts & rejects
(Loop (& thus reject <M,w>) if M ends up looping).

U accepts <M,w> iff M accepts w, i.e. L(U) = ATM

Yeah, but is it
decidable?!!

“Universal” TM
(can simulate any TM)

7R. Rao, CSE 322

Is ATM decidable?

✦ No! ATM = {<M,w> | M is a TM and M accepts w} is
undecidable! 1-slide Proof (by Contradiction):
1. Assume ATM is decidable ⇒ there’s a decider H, L(H) = ATM
2. H on <M,w> = ACC if M accepts w

REJ if M rejects w (halts in qREJ or loops on w)
3. Construct new TM D: On input <M>:

Simulate H on <M,<M>> (here, w = <M>)
If H accepts, then REJ input <M>
If H rejects, then ACC input <M>

4. What happens when D gets <D> as input?
D rejects <D> if H accepts <D,<D>> if D accepts <D>
D accepts <D> if H rejects <D,<D>> if D rejects <D>

Either way: Contradiction! D cannot exist ⇒ H cannot exist
Therefore, ATM is not a decidable language.

8R. Rao, CSE 322

Undecidability Proof uses Diagonalization

:::

…REJACCACC

…ACCloopREJ

…loopREJACCM1

M2

M3

:

<M1> <M2> <M3> …
Input strings

List
of
TMs

If H
exists

??…ACCACCREJ

:

REJ

ACC

ACC

::::

…REJACCACC

…ACCREJREJ

…REJREJACCM1

M2

M3

:
D

<M1> <M2> <M3> … <D>

D outputs
opposite
of diagonal

D on <Mi> accepts if and only if Mi on <Mi> rejects.
So, D on <D> will accept if and only if D on <D> rejects!
A contradiction ⇒ H cannot exist!
Therefore, ATM is not a decidable language.

9R. Rao, CSE 322

One Last Concept: Reducibility

✦ How do we show a new problem B is undecidable?

✦ Idea: Show that ATM is reducible to the new
problem B

What does this mean and how do we show this?

✦ Show that if B was decidable, then you can use the
decider for B as a subroutine to decide ATM

Contradiction, therefore B must also be undecidable

10R. Rao, CSE 322

The Halting Problem is Undecidable (Turing, 1936)

✦ Example: Halting Problem: Does TM M halt on input w?
Equivalent language: AH = { <M,w> | TM M halts on input w}
Need to show AH is undecidable
We know ATM = {<M,w> | TM M accepts w} is undecidable

✦ Show ATM is reducible to AH (Theorem 5.1 in text)
Suppose AH is decidable ⇒ there’s a decider MH for AH
Then, we can construct a decider DTM for ATM:
On input <M,w>, run MH on <M,w>.

● If MH rejects, then REJ (this takes care of M looping on w)
● If MH accepts, then simulate M on w until M halts
● If M accepts, then ACC input <M,w>; else REJ

L(DTM) = ATM ⇒ ATM is decidable! Contradiction ⇒ AH is undecidable

✦ E.g. 2: Show ETM = {<M> | M is a TM and L(M) = ∅ } is
undecidable (see Theorem 5.2 in the text)

