Closure Properties of Decidable Languages

✦ Decidable languages are closed under \cup, \circ, \ast, \cap, and complement

✦ Example: Closure under \cup

✦ Need to show that union of 2 decidable L’s is also decidable

Let M_1 be a decider for L_1 and M_2 a decider for L_2

A decider M for $L_1 \cup L_2$:

On input w:

1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)
2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.

M accepts w iff M_1 accepts w OR M_2 accepts w

i.e. $L(M) = L_1 \cup L_2$

Closure Properties

✦ Consider the proof for closure under \cup

A decider M for $L_1 \cup L_2$:

On input w:

1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)
2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w.

M accepts w iff M_1 accepts w OR M_2 accepts w

i.e. $L(M) = L_1 \cup L_2$

Will this proof work for showing Turing-recognizable languages are closed under \cup? Why/Why not?

Uh…I dunno.

Wait, will M_1 always halt?!!
Closure for Recognizable Languages

- Turing-Recognizable languages are closed under \cup, \circ, $*$, and \cap (but not complement! We will see this in the final lecture)
- Example: **Closure under \cap**
 Let M_1 be a TM for L_1 and M_2 a TM for L_2 (both may loop)
 A TM M for $L_1 \cap L_2$:

 On input w:
 1. Simulate M_1 on w. If M_1 halts and accepts w, go to step 2. If M_1 halts and rejects w, then REJECT w. (If M_1 loops, then M will also loop and thus reject w)
 2. Simulate M_2 on w. If M_2 halts and accepts, ACCEPT w. If M_2 halts and rejects, then REJECT w. (If M_2 loops, then M will also loop and thus reject w)

 M accepts w iff M_1 accepts w AND M_2 accepts w i.e. $L(M) = L_1 \cap L_2$

The Church-Turing Thesis

- Various definitions of “algorithms” were shown to be equivalent in the 1930s
- **Church-Turing Thesis**: “The intuitive notion of algorithms equals Turing machine algorithms”
 - Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- “Any computation on a digital computer is equivalent to computation in a Turing machine”

Dude, that’s pretty deep…
Undecidable Languages

- **The Question**: Are there languages that are not decidable by any Turing machine (TM)?
 - i.e. Are there problems that cannot be solved by any algorithm?
- Consider the language:
 \[\text{ATM} = \{<M,w> | M \text{ is a TM and } M \text{ accepts } w\} \]
- **Note**: \(<A,B,...>\) is just a string encoding the objects A, B, …
- In particular, \(<M,w>\) is a string listing all the components of TM M (separated by #, for example) followed by the string w
- Given input \(<M,w>\), it should be easy to extract the info about M and to simulate M on w (try writing a TM to do this!)
- What can we say about \(\text{ATM}\)?

\[\text{ATM} \text{ is Turing-recognizable} \]

- **ATM is Turing-recognizable**: Recognizer TM \(U\) for \(\text{ATM}\):
 - On input string \(<M,w>\):
 - Simulate M on w.
 - ACCEPT \(<M,w>\) if M halts & accepts w;
 - REJECT \(<M,w>\) if M halts & rejects (Loop (& thus reject \(<M,w>\)) if M ends up looping).
 - U accepts \(<M,w>\) iff M accepts w, i.e. \(L(U) = \text{ATM}\)

Yeah, but is it decidable???

“Universal” TM (can simulate any TM)
Is A_{TM} decidable?

- No! $A_{TM} = \{<M,w> | M \text{ is a TM and } M \text{ accepts } w\}$ is undecidable! 1-slide Proof (by Contradiction):
 1. Assume A_{TM} is decidable \Rightarrow there’s a decider H, $L(H) = A_{TM}$
 2. H on $<M,w> = \text{ACC}$ if M accepts w
 REJ if M rejects w (halts in q_{REJ} or loops on w)
 3. Construct new TM D: On input $<M>$:
 Simulate H on $<M,<M>>$ (here, $w = <M>$)
 If H accepts, then REJ input $<M>$
 If H rejects, then ACC input $<M>$
 4. What happens when D gets $<D>$ as input?
 D rejects $<D>$ if H accepts $<D,<D>>$ if D accepts $<D>$
 D accepts $<D>$ if H rejects $<D,<D>>$ if D rejects $<D>$
 Either way: Contradiction! D cannot exist
 Therefore, A_{TM} is not a decidable language.

Undecidability Proof uses Diagonalization

- Input strings
 - $<M_1>,<M_2>,<M_3>,...$
 - $<M_1>,<M_2>,<M_3>,...,<D>$
- List of TMs
 - M_1
 - M_2
 - M_3
 - M_i:
 - ACC
 - REJ
 - loop
 - ...
- If H exists
 - D outputs opposite of diagonal
 - ACC
 - REJ
 - ACC
 - ...
 - ACC
 - D on $<M_i>$ accepts if and only if M_i on $<M_i>$ rejects.
 - So, D on $<D>$ will accept if and only if D on $<D>$ rejects!
 - A contradiction \Rightarrow H cannot exist!
 - Therefore, A_{TM} is not a decidable language.
One Last Concept: Reducibility

✦ How do we show a new problem B is undecidable?
✦ Idea: Show that A_{TM} is reducible to the new problem B
 ✦ What does this mean and how do we show this?
✦ Show that if B was decidable, then you can use the decider for B as a subroutine to decide A_{TM}
 ✦ Contradiction, therefore B must also be undecidable

The Halting Problem is Undecidable (Turing, 1936)

✦ Example: Halting Problem: Does TM M halt on input w?
 ✦ Equivalent language: $A_H = \{ <M,w> | \text{TM M halts on input w} \}$
 ✦ Need to show A_H is undecidable
 ✦ We know $A_{TM} = \{ <M,w> | \text{TM M accepts w} \}$ is undecidable
✦ Show A_{TM} is reducible to A_H (Theorem 5.1 in text)
 ✦ Suppose A_H is decidable ⇒ there’s a decider M_H for A_H
 ✦ Then, we can construct a decider D_{TM} for A_{TM}:
 On input $<M,w>$, run M_H on $<M,w>$.
 ● If M_H rejects, then REJ (this takes care of M looping on w)
 ● If M_H accepts, then simulate M on w until M halts
 ● If M accepts, then ACC input $<M,w>$; else REJ
 $L(D_{TM}) = A_{TM} ⇒ A_{TM}$ is decidable! Contradiction ⇒ A_H is undecidable
✦ E.g. 2: Show $E_{TM} = \{ <M> | \text{M is a TM and L(M) = } \emptyset \}$ is undecidable (see Theorem 5.2 in the text)