Pushdown Automata (PDA)

- Main Idea: Add a stack to an NFA
 - Stack provides potentially unlimited memory to an otherwise finite memory machine (finite memory = finite no. of states)

- PDA = NFA +
 - Stack is LIFO (“Last In, First Out”)
 - Two operations:
 - “Push” symbol onto top of stack
 - “Pop” symbol from top of stack
6 Components of a PDA = \((Q, \Sigma, \Gamma, \delta, q_0, F)\)

- \(Q = \) set of states
- \(\Sigma = \) input alphabet
- \(\Gamma = \) stack alphabet
- \(q_0 = \) start state
- \(F \subseteq Q = \) set of accept states
- Transition function \(\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \text{Pow}(Q \times \Gamma_{\varepsilon})\)
 - (current state, next input symbol, popped symbol) \(\rightarrow\) \{set of (next state, pushed symbol)\}
 - Input/popped/pushed symbol can be \(\varepsilon\)

New components!
When does a PDA accept a string?

A PDA M accepts string \(w = w_1 w_2 \ldots w_m \) if and only if there exists at least one accepting computational path i.e. a sequence of states \(r_0, r_1, \ldots, r_m \) and strings \(s_0, s_1, \ldots, s_m \) (denoting stack contents) such that:

1. \(r_0 = q_0 \) and \(s_0 = \varepsilon \) \((M \text{ starts in } q_0 \text{ with empty stack}) \)
2. \((r_{i+1}, b) \in \delta(r_i, w_{i+1}, a) \) \((States \text{ follow transition rules}) \)
3. \(s_i = at \) and \(s_{i+1} = bt \) for some \(a, b \in \Gamma \varepsilon \) and \(t \in \Gamma^* \)
 \((M \text{ pops } “a” \text{ from top of stack and pushes } “b” \text{ onto stack}) \)
4. \(r_m \in F \) \((Last \text{ state in the sequence is an accept state}) \)
On-Board Examples

✦ PDA for $L = \{w#w^R | w \in \{0,1\}^*\}$ (# acts as a “delimiter”)
 ➢ E.g. 0#0, 1#1, 10#01, 01#10, 1011#1101 $\in L$
 ➢ L is a CFL (what is a CFG for it?)
 ➢ Recognizing L using a PDA:
 ✦ Push each symbol of w onto stack
 ✦ On reaching # (middle of the input), pop the stack – this
 yields symbols in w^R – and compare to rest of input

✦ PDA for $L_1 = \{ww^R | w \in \{0,1\}^*\}$
 ➢ Set of all even length palindromes over \{0,1\}

✦ Recognizing L_1 using a PDA:
 ✦ Problem: Don’t know the middle of input string
 ✦ Solution: Use nondeterminism (ϵ-transition) to guess!