Beyond the Regular world…

✧ Are there languages that are not regular?

✧ **Idea:** If a language violates a property obeyed by all regular languages, it cannot be regular!
 ✧ **Pumping Lemma** for showing non-regularity of languages

The Pumping Lemma for Regular Languages

✧ **What is it?**
 ✧ A statement (“lemma”) that is true for all regular languages

✧ **Why is it useful?**
 ✧ Can be used to show that certain languages are not regular
 ✧ How? **By contradiction:** Assume the given language is regular and show that it does not satisfy the pumping lemma
More about the Pumping Lemma

✦ **What is the idea behind it?**
 ✦ Any regular language \(L \) has a DFA \(M \) that recognizes it
 ✦ If \(M \) has \(p \) states and accepts a string of length \(\geq p \), the sequence of states \(M \) goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
 ✦ *All strings* that make \(M \) go through this cycle 0 or any number of times are also accepted by \(M \) and should be in \(L \).

Formal Statement of the Pumping Lemma

✦ **Pumping Lemma:** If \(L \) is regular, then \(\exists p \) such that \(\forall s \) in \(L \) with \(|s| \geq p \), \(\exists x, y, z \) with \(s = xyz \) and:
 1. \(xyz \in L \) \(\forall i \geq 0 \), and
 2. \(|y| \geq 1 \), and
 3. \(|xy| \leq p \).

✦ We did the proof on board last time…(see also page 79 in textbook)

✦ Proved in 1961 by Bar-Hillel, Peries and Shamir
Pumping Lemma in Plain English

Let L be a regular language and let \(p = \text{“pumping length”} = \text{no. of states of a DFA accepting } L \)

Then, any string \(s \) in L of length \(\geq p \) can be expressed as \(s = xyz \) where:
- \(y \) is not null (\(y \) is the cycle)
- \(|xy| \leq p \) (cycle occurs within \(p \) state transitions), and
- any “pumped” string \(xy^iz \) is also in L for all \(i \geq 0 \) (go through the cycle 0 or more times)

I liked the formal statement better…

That’s more like it…

Using The Pumping Lemma

In-Class Examples: Using the pumping lemma to show a language L is not regular

5 steps for a proof by contradiction:
1. Assume L is regular.
2. Let \(p \) be the pumping length given by the pumping lemma.
3. Choose cleverly an \(s \) in L of length at least \(p \), such that
4. For all ways of decomposing \(s \) into \(xyz \), where \(|xy| \leq p \) and \(y \) is not null,
5. There is an \(i \geq 0 \) such that \(xy^iz \) is not in L.

Can’t wait to use it…
Proving non-regularity as a Two-Person game
✦ An alternate view: Think of it as a *game between you and an opponent (JC):*

1. **You:** Assume L is regular
2. **JC:** Chooses some value p
3. **You:** Choose cleverly an s in L of length $\geq p$
4. **JC:** Breaks s into some xyz, where $|xy| \leq p$ and y is not null,
5. **You:** Need to choose an $i \geq 0$ such that xy^iz is not in L (in order to win (the prize of non-regularity)!)

(Note: Your i should work for all xyz that JC chooses, given your s)

Proving Non-Regularity using the Pumping Lemma
✦ On-Board Examples: Show the following are not regular
- $L_1 = \{0^n1^n \mid n \geq 0\}$ over the alphabet $\{0, 1\}$
- $ADD = \{x=y+z \mid x, y, z$ are binary numbers and x is the sum of y and $z\}$ over the alphabet $\{0, 1, =, +\}$
- $L_2 = \{0^p \mid p \text{ is prime}\}$ over the alphabet $\{0\}$
Da Pumpin’ Lemma
(Orig. lyrics: Harry Mairson)

Any regular language \(L \) has a magic numba \(p \)
And any long-enuff word \(s \) in \(L \) has da followin’ propa’ty:
Amongst its first \(p \) symbols is a segment you can find
Whose repetition or omission leaves \(s \) amongst its kind.

So if ya find a language \(L \) which fails dis acid test,
And some long word you pump becomes distinct from all da rest,
By contradiction you have shown dat language \(L \) is not
A regular homie, resilient to the damage you have wrought.

But if, upon the other hand, \(s \) stays within its \(L \),
Then either \(L \) is regular, or else you chose not well.
For \(s \) is \(xyz \), where \(y \) cannot be empty,
And \(y \) must come before da \(p+1^{th} \) symbol is read.

R. Rao, CSE 322
Based on: http://www.cs.brandeis.edu/~mairson/poems/nodel.html

If \(\{0^n1^n \mid n \geq 0\} \) is not Regular, what is it?

Enter…the world of Grammars
(after the Midterm)
Next Class: Midterm Review