Review of Proof Techniques

✦ **Contents of the CSE 322 Proofs Toolbox:**
 - **Proof by counterexample:** Give an example that disproves the given statement. E.g. PRIMES \subseteq ODD
 - **Proof by contradiction:** Assume statement is false and show that it leads to a contradiction.
 - **Proof by construction**
 - **Proof of set equality** $A = B$: Show $A \subseteq B$ and $B \subseteq A$
 - **Proof of “X iff Y”** (or $X \iff Y$) statements
 - **Proof by induction**
 - “Birdy” technique #1: **Pigeonhole principle**
 - “Birdy” technique #2: **Dovetailing**
 - CS Theoretician’s favorite: **Diagonalization**

R. Rao, CSE 322

Proof Techniques Review:

The **Big picture**

✦ **Proof by contradiction:** Assume statement is false and show that it leads to a contradiction
 - **E.g.**: Prove: Complement of any finite subset of \mathbb{Z} is infinite

✦ **Proof by construction:** Show that a statement can be satisfied by constructing an object using what is given
 - **E.g.**: De Morgan’s Law (one of two):

 $A - (B \cup C) = (A - B) \cap (A - C)$

✦ **Proof of set equality** $A = B$: Show $A \subseteq B$ and $B \subseteq A$
 - **E.g.**: De Morgan’s Law (one of two):

 $A - (B \cup C) = (A - B) \cap (A - C)$

✦ **Proving “X iff Y” statements:** Prove $X \Rightarrow Y$ (“X only if Y”) and $Y \Rightarrow X$ (“X if Y”)
 - **E.g.**: For all real numbers x, show $\lfloor x \rfloor = \lceil x \rceil$ iff $x \in \mathbb{Z}$
Pigeonhole principle: If A and B are finite sets and |A| > |B|, then there is no one-to-one function from A to B

\[f : A \rightarrow B \] is one-to-one if for any distinct \(x, y \in A \), \(f(x) \neq f(y) \)

Idea: “more pigeons than pigeonholes” at least one pigeonhole contains two pigeons.

E.g. In a room of 13 or more people, at least 2 have same birthmonth

Proof? By induction on |B|

What is “Proof by Induction”?

Proof by Induction

Proof by induction (very common in CS Theory): 2 steps –

1. Basis Step: Show statement is true for some finite value \(n_0 \), typically \(n_0 = 0 \)

2. Induction Hypothesis and Induction Step: Assume statement is true for some fixed but arbitrary \(k \geq n_0 \). Show it is also true for \(k + 1 \)

Example: Show that for all \(n \geq 0 \), \(1 + 2 + \ldots + n = n(n+1)/2 \)
To Infinity and Beyond (with apologies to Disney)

- **Sizing up sets**: Cardinality of a set and countably infinite sets
- **Avian Technique #2 – Dovetailing**: Useful for showing union of any finite or countably infinite collection of countably infinite sets is again countably infinite
 - Set A is *countably infinite* if there is a 1-1 correspondence (*“bijection”*) between \mathbb{N} (the set of natural numbers) and A
 - *E.g.* Use dovetailing to show \mathbb{Z} and $\mathbb{N} \times \mathbb{N}$ are both countably infinite
 - A set is uncountable if it is neither finite nor countably infinite
- **Diagonalization and Uncountable Sets**: See pages 160-163 in the text for a nice introduction and more examples.
 - Example done in class last time: Power set of \mathbb{N} is uncountable
- **See Handout #1 for more details…**

Are we done with this review yet?

Enter…the finite automaton…