Are There Languages That Are Not Even Recognizable?

0 Recall from last class:
A = {<M,w>|Mis aTM and M accepts w}
Ay = {<M,w>|Mis a TM and M halts on w}

O Aqy and Ay are undecidable but Turing-recognizable
< Are there languages that are not even Turing-

recognizable?

0 What happens if a language A and its complement A are
both Turing-recognizable?

R. Rao, CSE 322 1

Are There Languages That Are Not Even Recognizable?

O Aqy and Ay are undecidable but Turing-recognizable
< Are there languages that are not even Turing-recognizable?

0 What happens if both A and A are Turing-recognizable?
© There exist TMs M1 and M2 that recognize A and A
< Can construct a decider for A! On input w:
1. Simulate M1 and M2 on w one step at a time, alternating
between them.
2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and
halt.

0 Thm: A and A are both Turing-recognizable iff A is decidable

0 Corollary: A, and KH are not Turing-recognizable

< If they were, then A, and Aj; would be decidable
R. Rao, CSE 322 2

The Chomsky Hierarchy of Languages

Increasing generality

v

Language Regular Context-Free Decidable | Turing-
Recognizable
Computational | DFA, PDA, Deciders — | TMs that
Models NFA, CFG TMs that | may loop for
RegExp halt for all | strings not in
inputs language
Examples oon*11 [{o"1"|n=0}, [{0"1"0"| |Aprys
>
Palindromes | "~ 0, Ay
Apras
Acrg

(Chomsky also studied context-sensitive languages (CSLs, e.g. a"b"c") , a
subset of decidable languages recognized by linear-bounded automata (LBA))

R. Rao, CSE 322

3

The Chomsky Hierarchy — Then & Now...

Not T-recognizable

Then (1950s)

R. Rao, CSE 322

a' /
i\lo‘afh Chomsky

U.S. interventionism in
the developing world

Political economy
of human rights

Propaganda role
of corporate
media

Review Slides for the
Final Exam will appear
here

R. Rao, CSE 322

This space for rent

R. Rao, CSE 322

Review of Chapters 0-1

0 See Midterm Review Slides
< Emphasis on:
OSets, strings, and languages
OOperations on strings/languages (concat, *, union, etc)
OLexicographic ordering of strings
ODFAs and NFAs: definitions and how they work
ORegular languages and properties
ORegular expressions and GNFAs (see lecture slides)
OPumping lemma for regular languages and showing
nonregularity

R. Rao, CSE 322 7

Context-Free Grammars (CFGs)

0 CFGG=(V, 5, R, S)
< Variables, Terminals, Rules, Start variable
© uAv yields uwv if A » wis a rule in G: Written as uAv = uwv
@ u=*vifuyields vin 0, 1, or more steps
@ LG)={w|S=>*w}
< CFGs for regular languages: Convert DFA to a CFG (Create
variables for states and rules to simulate transitions)

0 Ambiguity: Grammar G is ambiguous if G has two or more

parse trees for some string w in L(G)
< See lecture notes/text/homework for examples

0 Closure properties of Context-Free languages
< Closed under [, concat, * but not n or complementation.
< See homework and lecture slides

R. Rao, CSE 322 8

Pushdown Automata (PDA)

0 PDAP=(Q,Z,T,3,q,F)
@ Q = set of states
< Z = input alphabet
© [= stack alphabet
@ q, = start state
< F O Q = set of accept states
< Transition function &: Q X X, x [, » Pow(Q X I',)
< (current state, next input symbol, popped symbol) —
{set of (next state, pushed symbol)}
< Input/popped/pushed symbol can be €

0 Example PDAs for:
& {wHwR| w 0 {0,1}*}, {wwR|w O {0,1}*}, Palindromes

R. Rao, CSE 322 9

Context-Free Languages: Main Results

0 CFGs and PDAs are equivalent in computational power
< Generate/recognize the same class of languages (CFLs)
1. If L =L(G) for some CFG G, then L = L(M) for some PDA M
O Know how to convert a given CFG to a PDA
2. If L=L(M) for some PDA M, then L = L(G) for some CFG G
O Be familiar with the construction — no need to memorize the
induction proof

0 Pumping Lemma for CFLs
< Know the exact statement: L CFL = [p s.t. Us in L s.t. [s| = p,
Ou, v, x, y, and z s.t. s = uvxyz and:
LuixyzOLOi=0, 2.|vy=1,and 3. |wxy|<p.

0 Using the PL to show languages are not CFLs

< E.g. {0"1"0" |n =0} and {0"|n is a prime number}
R. Rao, CSE 322 10

Turing Machines: Definition and Operation

0O TMM=(Q,2,T,d,dy quccs drer)

© Q = set of states

© 2 = input alphabet not containing blank symbol “

© [= tape alphabet containing blank “_”, all symbols in Z, plus
possible temporary variables such as X, Y, etc.

@ q, = start state

@ qacc = accept and halt state

< qgrg; = reject and halt state

< Transition function &: QX I - Q x ' x {L, R}

0 O(current state, symbol under the head) = (next state, symbol to
write over current symbol, direction of head movement)
< Configurations of a TM, definition of language L(M) of a TM M

R. Rao, CSE 322 11

Decidable versus Recognizable Languages

0 A language is Turing-recognizable if there is a Turing
machine M such that L(M) = L
< For all strings in L, M halts in state q, ¢
< For strings not in L, M may either halt in qg, or loop forever

0 A language is decidable if there is a “decider” Turing
machine M that halts on all inputs such that L(M) = L
< For all strings in L, M halts in state q,¢c
< For all strings not in L, M halts in state qgp;

00 Showing a language is decidable by construction:
& Implementation level description of deciders
< E.g. {0"170" | n =0}, {0" | n = m? for some integer m}, see text

R. Rao, CSE 322 12

Equivalence of TM Types & Church-Turing Thesis

0 Varieties of TMs: Know the definition, operation, and idea
behind proof of equivalence with standard TM
< Multi-Tape TMs: TM with k tapes and k heads
© Nondeterministic TMs (NTMs)
O Decider if all branches halt on all inputs
< Enumerator TM for L: Prints all strings in L (in any order,
possibly with repetitions) and only the strings in L

0 Can use any of these variants for showing a language is
Turing-recognizable or decidable

0 Church-Turing Thesis: Any formal definition of
“algorithms” or “programs” is equivalent to Turing machines

R. Rao, CSE 322 13

Decidable Problems

0 Any problem can be cast as a language membership problem
© Does DFA D accept input w? Equivalent to:
Is <D,w> in App, = {<D,w>| D is a DFA that accepts input w}?

0 Decidable problems concerning languages and machines:
(see textbook for proofs to some of these)
@ Appa = {<D,w>| D is a DFA that accepts input w}
@ Agpa= {<N,w>| N is a NFA that accepts input w}
@ Agpx = {<R,w>| R is a reg. exp. that generates string w}
2 Agnpty-pra = {<D>|D is a DFA and L(D) = I}
2 Agguarpra = {<C,D>| C and D are DFAs and L(C) = L(D)}
@ Acpg = 1<G,w>| G is a CFG that generates string w}
2 Agmpty-crg = 1<G>| G is a CFG and L(G) = U }

R. Rao, CSE 322 14

Undecidability, Reducibility, Unrecognizability

0 Apy = {<M,w>|Misa TM and M accepts w} is Turing-
recognizable but not decidable (Proof by diagonalization)

0 To show a new problem A is undecidable, reduce A, to A
< Show that if A was decidable, then you can use the decider for
A as a subroutine to decide A+, (leading to a contradiction)
< E.g. Halting problem = “Does a program halt for an input or
go into an infinite loop?”
< Can show that the Halting problem is undecidable by reducing
Apy to Ay = { <M,w>| TM M halts on input w}

0 A is decidable iff A and A are both Turing-recognizable

< Corollary: KTM and KH are not Turing-recognizable

R. Rao, CSE 322 15

Final Exam

0 Details regarding the Final Exam

< When: Monday, June 7, 2004 from 8:30-10:20 a.m.

< Where: Same classroom (MGH 231)

< What will it cover?
OChapters 0-4 and Chapter 5: pages 171-176.
O Emphasis will be on material covered after midterm

(Chapter 2 and beyond)

OYou may bring 2 pages of notes (8 /2" x 117 sheets!)
[0 Approximately 6 questions

< How do I ace it?
OPractice, practice, practice!
OSee class website for sample final exam and solutions

R. Rao, CSE 322 16

Stay cool ‘n’
keep pumpin’!

I believe the

Final exam is
decidable!

I believe the world’s
problems are
politically decidable.

I believe my next
movie will be
unrecognizable.

R. Rao, CSE 322

