Are There Languages That Are Not Even Recognizable?

0 Recall from last class:
A = {<M,w>|Mis aTM and M accepts w}
Ay = {<M,w>|Mis a TM and M halts on w}

O Aqy and Ay are undecidable but Turing-recognizable
< Are there languages that are not even Turing-

recognizable?

0 What happens if a language A and its complement A are
both Turing-recognizable?
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Are There Languages That Are Not Even Recognizable?

O Aqy and Ay are undecidable but Turing-recognizable
< Are there languages that are not even Turing-recognizable?

0 What happens if both A and A are Turing-recognizable?
© There exist TMs M1 and M2 that recognize A and A
< Can construct a decider for A! On input w:
1. Simulate M1 and M2 on w one step at a time, alternating
between them.
2. If M1 accepts, then ACC w and halt; if M2 accepts, REJ w and
halt.

0 Thm: A and A are both Turing-recognizable iff A is decidable

0 Corollary: A, and KH are not Turing-recognizable

< If they were, then A, and Aj; would be decidable
R. Rao, CSE 322 2




The Chomsky Hierarchy of Languages

Increasing generality

v

Language Regular Context-Free Decidable | Turing-
Recognizable
Computational | DFA, PDA, Deciders — | TMs that
Models NFA, CFG TMs that | may loop for
RegExp halt for all | strings not in
inputs language
Examples oon*11 [ {o"1"|n=0}, [{0"1"0"| |Aprys
>
Palindromes | "~ 0, Ay
Apras
Acrg

(Chomsky also studied context-sensitive languages (CSLs, e.g. a"b"c") , a
subset of decidable languages recognized by linear-bounded automata (LBA))
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The Chomsky Hierarchy — Then & Now...

Not T-recognizable

Then (1950s)
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a' /
i\lo‘afh Chomsky

U.S. interventionism in
the developing world

Political economy
of human rights

Propaganda role
of corporate
media




Review Slides for the
Final Exam will appear
here
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This space for rent
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Review of Chapters 0-1

0 See Midterm Review Slides
< Emphasis on:
OSets, strings, and languages
OOperations on strings/languages (concat, *, union, etc)
OLexicographic ordering of strings
ODFAs and NFAs: definitions and how they work
ORegular languages and properties
ORegular expressions and GNFAs (see lecture slides)
OPumping lemma for regular languages and showing
nonregularity
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Context-Free Grammars (CFGs)

0 CFGG=(V, 5, R, S)
< Variables, Terminals, Rules, Start variable
© uAv yields uwv if A » wis a rule in G: Written as uAv = uwv
@ u=*vifuyields vin 0, 1, or more steps
@ LG)={w|S=>*w}
< CFGs for regular languages: Convert DFA to a CFG (Create
variables for states and rules to simulate transitions)

0 Ambiguity: Grammar G is ambiguous if G has two or more

parse trees for some string w in L(G)
< See lecture notes/text/homework for examples

0 Closure properties of Context-Free languages
< Closed under [, concat, * but not n or complementation.
< See homework and lecture slides
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Pushdown Automata (PDA)

0 PDAP=(Q,Z,T,3,q,F)
@ Q = set of states
< Z = input alphabet
© [ = stack alphabet
@ q, = start state
< F O Q = set of accept states
< Transition function &: Q X X, x [, » Pow(Q X I',)
< (current state, next input symbol, popped symbol) —
{set of (next state, pushed symbol)}
< Input/popped/pushed symbol can be €

0 Example PDAs for:
& {wHwR| w 0 {0,1}*}, {wwR|w O {0,1}*}, Palindromes
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Context-Free Languages: Main Results

0 CFGs and PDAs are equivalent in computational power
< Generate/recognize the same class of languages (CFLs)
1. If L =L(G) for some CFG G, then L = L(M) for some PDA M
O Know how to convert a given CFG to a PDA
2. If L=L(M) for some PDA M, then L = L(G) for some CFG G
O Be familiar with the construction — no need to memorize the
induction proof

0 Pumping Lemma for CFLs
< Know the exact statement: L CFL = [p s.t. Us in L s.t. [s| = p,
Ou, v, x, y, and z s.t. s = uvxyz and:
LuixyzOLOi=0, 2.|vy=1,and 3. |wxy|<p.

0 Using the PL to show languages are not CFLs

< E.g. {0"1"0" |n =0} and {0"|n is a prime number}
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Turing Machines: Definition and Operation

0O TMM=(Q,2,T,d,dy quccs drer)

© Q = set of states

© 2 = input alphabet not containing blank symbol “

© [ = tape alphabet containing blank “_”, all symbols in Z, plus
possible temporary variables such as X, Y, etc.

@ q, = start state

@ qacc = accept and halt state

< qgrg; = reject and halt state

< Transition function &: QX I - Q x ' x {L, R}

0 O(current state, symbol under the head) = (next state, symbol to
write over current symbol, direction of head movement)
< Configurations of a TM, definition of language L(M) of a TM M
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Decidable versus Recognizable Languages

0 A language is Turing-recognizable if there is a Turing
machine M such that L(M) = L
< For all strings in L, M halts in state q, ¢
< For strings not in L, M may either halt in qg, or loop forever

0 A language is decidable if there is a “decider” Turing
machine M that halts on all inputs such that L(M) = L
< For all strings in L, M halts in state q,¢c
< For all strings not in L, M halts in state qgp;

00 Showing a language is decidable by construction:
& Implementation level description of deciders
< E.g. {0"170" | n =0}, {0" | n = m? for some integer m}, see text
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Equivalence of TM Types & Church-Turing Thesis

0 Varieties of TMs: Know the definition, operation, and idea
behind proof of equivalence with standard TM
< Multi-Tape TMs: TM with k tapes and k heads
© Nondeterministic TMs (NTMs)
O Decider if all branches halt on all inputs
< Enumerator TM for L: Prints all strings in L (in any order,
possibly with repetitions) and only the strings in L

0 Can use any of these variants for showing a language is
Turing-recognizable or decidable

0 Church-Turing Thesis: Any formal definition of
“algorithms” or “programs” is equivalent to Turing machines
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Decidable Problems

0 Any problem can be cast as a language membership problem
© Does DFA D accept input w? Equivalent to:
Is <D,w> in App, = {<D,w>| D is a DFA that accepts input w}?

0 Decidable problems concerning languages and machines:
(see textbook for proofs to some of these)
@ Appa = {<D,w>| D is a DFA that accepts input w}
@ Agpa= {<N,w>| N is a NFA that accepts input w}
@ Agpx = {<R,w>| R is a reg. exp. that generates string w}
2 Agnpty-pra = {<D>|D is a DFA and L(D) = I}
2 Agguarpra = {<C,D>| C and D are DFAs and L(C) = L(D)}
@ Acpg = 1<G,w>| G is a CFG that generates string w}
2 Agmpty-crg = 1<G>| G is a CFG and L(G) = U }
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Undecidability, Reducibility, Unrecognizability

0 Apy = {<M,w>|Misa TM and M accepts w} is Turing-
recognizable but not decidable (Proof by diagonalization)

0 To show a new problem A is undecidable, reduce A, to A
< Show that if A was decidable, then you can use the decider for
A as a subroutine to decide A+, (leading to a contradiction)
< E.g. Halting problem = “Does a program halt for an input or
go into an infinite loop?”
< Can show that the Halting problem is undecidable by reducing
Apy to Ay = { <M,w>| TM M halts on input w}

0 A is decidable iff A and A are both Turing-recognizable

< Corollary: KTM and KH are not Turing-recognizable
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Final Exam

0 Details regarding the Final Exam

< When: Monday, June 7, 2004 from 8:30-10:20 a.m.

< Where: Same classroom (MGH 231)

< What will it cover?
OChapters 0-4 and Chapter 5: pages 171-176.
O Emphasis will be on material covered after midterm

(Chapter 2 and beyond)

OYou may bring 2 pages of notes (8 /2" x 117 sheets!)
[0 Approximately 6 questions

< How do I ace it?
OPractice, practice, practice!
OSee class website for sample final exam and solutions
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Stay cool ‘n’
keep pumpin’!

I believe the

Final exam is
decidable!

I believe the world’s
problems are
politically decidable.

I believe my next
movie will be
unrecognizable.
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