Pumping Lemma Recap

✦ **Formal Statement of the Pumping Lemma:** If L is regular, then \(\exists p \) such that \(\forall s \in L \) with \(|s| \geq p \), \(\exists x, y, z \) with \(s = xyz \) and:
 1. \(xy^iz \in L \forall i \geq 0 \), and
 2. \(|y| \geq 1 \), and
 3. \(|xy| \leq p \).

✦ Proof on board last time…(see also page 79 in textbook)

✦ Proved in 1961 by Bar-Hillel, Peries and Shamir

Pumping Lemma in Plain English

✦ Let L be a regular language and let \(p = \) “pumping length” = no. of states of a DFA accepting L

✦ Then, any string \(s \) in L of length \(\geq p \) can be expressed as \(s = xyz \) where:
 - \(y \) is not empty (\(y \) is the cycle)
 - \(|xy| \leq p \) (cycle occurs within \(p \) state transitions), and
 - any “pumped” string \(xy^iz \) is also in L for all \(i \geq 0 \) (go through the cycle 0 or more times)

I liked the formal statement better…

That’s more like it…
Using The Pumping Lemma

✦ In-Class Examples: Using the Pumping Lemma to show a language L is not regular

✧ 5 steps for a proof by contradiction:
1. Assume L is regular. Then, L satisfies the P. Lemma.
2. Let p be the pumping length given by the P. Lemma.
3. Choose cleverly an s in L of length at least p, such that:
4. For all ways of decomposing s into xyz, where $|xy| \leq p$ and y is not empty,
5. There is an $i \geq 0$ such that xy^iz is not in L.

Can’t wait to use it…

Proving non-regularity as a Two-Person game

✦ An alternate view: Think of it as a game between you and an opponent (JC):
1. You: Assume L is regular
2. JC: Chooses some value p
3. You: Choose cleverly an s in L of length $\geq p$
4. JC: Breaks s into some xyz, where $|xy| \leq p$ and y is not empty,
5. You: Need to choose an $i \geq 0$ such that xy^iz is not in L (in order to win (the prize of non-regularity)!)

(Note: Your i should work for all xyz that JC chooses, given your s)
Proving Non-Regularity using the Pumping Lemma

✦ Examples: Show the following are not regular

✓ $L_1 = \{0^n1^n \mid n \geq 0\}$ over the alphabet \{0, 1\}
✓ $L_2 = \{w \mid w \text{ contains equal number of 0s and 1s}\}$ over the alphabet \{0, 1\}
✓ $L_3 = \{0^n1^m \mid n > m\}$ over the alphabet \{0, 1\}
✓ $ADD = \{x=y+z \mid x, y, z \text{ are binary numbers and } x \text{ is the sum of } y \text{ and } z\}$ over the alphabet \{0, 1, =, +\}
✓ $SQUARES = \{0^m \mid m = n^2 \text{ for some } n \geq 0\}$ over alphabet \{0\}
(see textbook for the proof)

Da Pumpin’ Lemma
(Orig. lyrics: Harry Mairson)

Any regular language L has a magic numba p
And any long-enuff word s in L has da followin’ propa’ty:
Amongst its first p symbols is a segment you can find
Whoz repetition or omission leaves s amongst its kind.

So if ya find a language L which fails dis acid test,
And some long word ya pump becomes distinct from all da rest,
By contradiction you have shown dat language L is not
A regular homie, resilient to the damage you’ve caused.

But if, upon the other hand, s stays within its L,
Then either L is regulah, or else you chose not well.
For s is xyz, where y cannot be empty,
And y must come before da $p+j^{th}$ symbol is read.
If \(\{0^n1^n \mid n \geq 0\} \) is not Regular, what is it?

Enter... the world of Grammars
(after the Midterm)

CSE 322: Midterm Review

- **Basic Concepts** (Chapter 0)
 - **Sets**
 - Notation and Definitions
 - \(A = \{x \mid \text{rule about } x\}, \ x \in A, \ A \subseteq B, \ A = B \)
 - \(\exists \) (“there exists”), \(\forall \) (“for all”)
 - Finite and Infinite Sets
 - Set of natural numbers \(N \), integers \(Z \), reals \(R \) etc.
 - Empty set \(\emptyset \)
 - Set operations: Know the definitions for proofs
 - Union: \(A \cup B = \{x \mid x \in A \text{ or } x \in B\} \)
 - Intersection \(A \cap B = \{x \mid x \in A \text{ and } x \in B\} \)
 - Complement \(\overline{A} = \{x \mid x \notin A\} \)
Basic Concepts (cont.)

* Set operations (cont.)
 - Power set of $A = \text{Pow}(A)$ or 2^A = set of all subsets of A
 - E.g. $A = \{0,1\} \Rightarrow 2^A = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
 - Cartesian Product $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$

* Functions:
 - f: Domain \rightarrow Range
 - $\text{Add}(x,y) = x + y \Rightarrow \text{Add}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$
 - Definitions of 1-1 and onto (bijection if both)

Strings

* Alphabet Σ = finite set of symbols, e.g. $\Sigma = \{0,1\}$

* String w = finite sequence of symbols $\in \Sigma$
 - $w = w_1w_2\ldots w_n$

* String properties: Know the definitions
 - Length of $w = |w| \quad (|w| = n \text{ if } w = w_1w_2\ldots w_n)$
 - Empty string $= \epsilon$ \quad (length of $\epsilon = 0$)
 - Substring of w
 - Reverse of $w = w^R = w_nw_{n-1}\ldots w_1$
 - Concatenation of strings x and y (append y to x)
 - $y^k = \text{concatenate } y \text{ to itself to get string of } k \text{ } y\text{'s}$
 - Lexicographical order = order based on length and dictionary order within equal length
Languages and Proof Techniques

✦ Language \(L \) = set of strings over an alphabet (i.e. \(L \subseteq \Sigma^* \))
 - E.g. \(L = \{0^n1^n \mid n \geq 0 \} \) over \(\Sigma = \{0,1\} \)
 - E.g. \(L = \{p \mid p \text{ is a syntactically correct C++ program} \} \) over \(\Sigma = \text{ASCII characters} \)

✦ Proof Techniques: Look at lecture slides, handouts, and notes
 1. Proof by counterexample
 2. Proof by contradiction
 3. Proof of set equalities (\(A = B \))
 4. Proof of “iff” (\(X \iff Y \)) statements (prove both \(X \implies Y \) and \(X \iff Y \))
 5. Proof by construction
 6. Proof by induction
 7. Pigeonhole principle
 8. Dovetailing to prove a set is countably infinite (e.g. \(\mathbb{Z} \) or \(\mathbb{N} \times \mathbb{N} \))
 9. Diagonalization to prove a set is uncountable (e.g. \(2^\mathbb{N} \) or Reals)

R. Rao, CSE 322

Chapter 1 Review: Languages and Machines

R. Rao, CSE 322
Languages and Machines (Chapter 1)

✦ Language = set of strings over an alphabet
 ➔ Empty language = language with no strings = ∅
 ➔ Language containing only empty string = {ε}

✦ DFAs
 ➔ Formal definition M = (Q, Σ, δ, q₀, F)
 ➔ Set of states Q, alphabet Σ, start state q₀, accept ("final")
 states F, transition function δ: Q × Σ → Q
 ➔ M recognizes language L(M) = {w | M accepts w}
 ➔ In class examples:
 E.g. DFA for L(M) = {w | w ends in 0}
 E.g. DFA for L(M) = {w | w does not contain 00}
 E.g. DFA for L(M) = {w | w contains an even # of 0's}
 Try: DFA for L(M) = {w | w contains an even # of 0's and an odd
 number of 1's}

Languages and Machines (cont.)

✦ Regular Language = language recognized by a DFA

✦ Regular operations: Union \cup, Concatenation \circ and star *
 ➔ Know the definitions of A \cup B, A.B and A**
 ➔ $\Sigma = \{0,1\} \Rightarrow \Sigma^* = \{\varepsilon, 0, 1, 00, 01, \ldots\}$

✦ Regular languages are closed under the regular operations
 ➔ Means: If A and B are regular languages, we can show A \cup B,
 A\circB and A* (and also B*) are regular languages
 ➔ Cartesian product construction for showing A \cup B is regular by
 simulating DFAs for A and B in parallel

✦ Other related operations: A \cap B and complement \overline{A}
 ➔ Are regular languages closed under these operations?
NFAs, Regular expressions, and GNFAs

- **NFAs vs DFAs**
 - DFA: \(\delta(\text{state}, \text{symbol}) = \text{next state} \)
 - NFA: \(\delta(\text{state}, \text{symbol} \text{ or } \varepsilon) = \text{set of next states} \)
 - Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, \(\varepsilon \)-edges
 - Definition of: NFA \(N \) accepts a string \(w \in \Sigma^* \)
 - Definition of: NFA \(N \) recognizes a language \(L(N) \subseteq \Sigma^* \)
 - E.g. NFA for \(L = \{ w \mid w = x1a, x \in \Sigma^* \text{ and } a \in \Sigma \} \)

- **Regular expressions**: Base cases \(\varepsilon, \emptyset, a \in \Sigma \), and \(R1 \cup R2, R1^*R2 \) or \(R1^* \)

- **GNFAs = NFAs with edges labeled by regular expressions**
 - Used for converting NFAs/DFAs to regular expressions

Main Results and Proofs

- **L is a Regular Language iff**
 - L is recognized by a DFA iff
 - L is recognized by an NFA iff
 - L is recognized by a GNFA iff
 - L is described by a Regular Expression

- **Proofs:**
 - NFA→DFA: subset construction (1 DFA state=subset of NFA states)
 - DFA→GNFA→Reg Exp: Repeat two steps:
 1. Collapse two parallel edges to one edge labeled \((a \cup b) \), and
 2. Replace edges through a state with a loop with one edge labeled \((ab^*c) \)
 - Reg Exp→NFA: combine NFAs for base cases with \(\varepsilon \)-transitions
Other Results

✦ Using NFAs to show that Regular Languages are closed under:
 ➔ Regular operations \cup, \cdot, and \ast

✦ Are Regular Languages closed under:
 ➔ intersection?
 ➔ complement (Exercise 1.10)?

✦ Are there other operations that regular languages are closed under?

What about the **reversal** operation?

What about the **idon’tcare** operation?

What about the **subset** operation?
Other Results

- Are Regular languages closed under:
 - reversal?
 - subset (⊆)?
 - superset (⊇)?
 - Prefix?
 Prefix(L) = \{ w ∈ Σ* and wx ∈ L for some x ∈ Σ* \}
 - NoExtend?
 NoExtend(L) = \{ w ∈ L but wx ∉ L for all x ∈ Σ*-{ε} \}
 (see also Problem 1.32 in the text)

Pumping Lemma

- **Pumping lemma in plain English (sort of):** If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length ≥ p can be expressed as s = xyz where y is not null (y is the loop in the DFA), |xy| ≤ p (loop occurs within p state transitions), and any “pumped” string xy^iz is in L for all i ≥ 0 (go through the loop 0 or more times).

- **Pumping lemma in plain Logic:**
 L regular ⇒ ∃ p s.t. (\∀ s ∈ L s.t. |s| ≥ p (∃ x,y,z ∈ Σ* s.t. (s = xyz) and (|y| ≥ 1) and (|xy| ≤ p) and (\∀ i ≥ 0, xy^iz ∈ L))

- Is the other direction ⇐ also true?
 No! See Problem 1.37 for a counterexample
Proving Non-Regularity using the Pumping Lemma

✦ Proof by contradiction to show L is not regular
1. Assume L is regular. Then L must satisfy the P. Lemma.
2. Let p be the “pumping length”
3. Choose a long enough string $s \in L$ such that $|s| \geq p$
4. Let x, y, z be strings such that $s = xyz$, $|y| \geq 1$, and $|xy| \leq p$
5. Pick an $i \geq 0$ such that $xy^iz \notin L$ (for all possible x, y, z as in 4)
This contradicts the P. lemma. Therefore, L is not regular

✦ Examples: \{0^n1^n | n \geq 0\}, \{ww | w \in \Sigma^*\}, \{0^m | m=n^2\}, ADD = \{x=y+z | x, y, z are binary numbers and x is sum of y and z\}

✦ Can sometimes also use closure under \cap (and/or complement)
 \- E.g. If $L \cap B = L_1$, and B is regular while L_1 is not regular, then
 L is also not regular (if L was regular, L_1 would be regular)

Some Applications of Regular Languages

✦ Pattern matching and searching:
 \- E.g. In Unix:
 \- ls *.c
 \- cp /myfriends/games/*.* /mydir/
 \- grep ’Spock’ *trek.txt

✦ Compilers:
 \- id ::= letter (letter | digit)*
 \- int ::= digit digit*
 \- float ::= d d* .d* (e | E d d*)
 \- The symbol | stands for “or” (= union)
Good luck on the midterm on Wednesday!

✦ You can bring one 8 1/2” x 11” review sheet (double-sided ok)
✦ The questions sheet will have space for answers. We will also bring extra blank sheets for those of you who don’t believe in brevity.

Don’t sweat it!

• Go through the homeworks, lecture slides, and examples in the text (Chapters 0 and 1 only)
• Do the practice midterm on the website and avoid being surprised!