The Church-Turing Thesis

- Various definitions of “algorithms” were shown to be equivalent in the 1930s
- **Church-Turing Thesis**: “The intuitive notion of algorithms equals Turing machine algorithms”
 - Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- “Any computation on a digital computer is equivalent to computation in a Turing machine”

Dude, that’s pretty deep…

Closure Properties of Decidable Languages

- Decidable languages are closed under \cup, \circ, \ast, \cap, and complement
- Example: Closure under \cup
- Need to show that union of 2 decidable L’s is also decidable
 Let M1 be a decider for L1 and M2 a decider for L2
 A decider M for $L_1 \cup L_2$:
 - On input w:
 1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
 2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.
 - M accepts w iff M1 accepts w OR M2 accepts w
 i.e. $L(M) = L_1 \cup L_2$
Closure Properties of Decidable Languages

- Consider the proof for closure under \cup
 A decider M for $L_1 \cup L_2$:
 On input w:
 1. Simulate M_1 on w. If M_1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M_1 has halted and rejected w)
 2. Simulate M_2 on w. If M_2 accepts, ACCEPT w else REJECT w. M accepts w iff M_1 accepts w OR M_2 accepts w
i.e. $L(M) = L_1 \cup L_2$

Will this proof work for showing Turing-recognizable languages are closed under \cup? Why/Why not?

Uh...I dunno. Wait, will M_1 always halt?!

Closure for Recognizable Languages

- Turing-Recognizable languages are closed under \cup, \circ, \ast, and \cap (but not complement! We will see this in a later lecture)
- Example: Closure under \cap
 Let M_1 be a TM for L_1 and M_2 a TM for L_2 (both may loop)
 A TM M for $L_1 \cap L_2$:
 On input w:
 1. Simulate M_1 on w. If M_1 halts and accepts w, go to step 2. If M_1 halts and rejects w, then REJECT w. (If M_1 loops, then M will also loop and thus reject w)
 2. Simulate M_2 on w. If M_2 halts and accepts, ACCEPT w. If M_2 halts and rejects, then REJECT w. (If M_2 loops, then M will also loop and thus reject w)
 M accepts w iff M_1 accepts w AND M_2 accepts w i.e. $L(M) = L_1 \cap L_2$