Pushdown Automata (PDA)

✦ Main Idea: Add a stack to an NFA
 ✦ Stack provides potentially unlimited memory to an otherwise
 finite memory machine (finite memory = finite no. of states)

✦ PDA = NFA +

✦ Stack is LIFO (“Last In, First Out”)
✦ Two operations:
 ✦ “Push” symbol onto top of stack
 ✦ “Pop” symbol from top of stack

6 Components of a PDA = (Q, Σ, Γ, δ, q₀, F)

✦ Q = set of states
✦ Σ = input alphabet
✦ Γ = stack alphabet
✦ q₀ = start state
✦ F ⊆ Q = set of accept states
✦ Transition function δ: Q × Σ × Γ → Pow(Q × Γ)
 ✦ (current state, next input symbol, popped symbol) →
 {set of (next state, pushed symbol)}
 ✦ Input/popped/pushed symbol can be ε
When does a PDA accept a string?

A PDA M accepts string $w = w_1 w_2 \ldots w_m$ if and only if there exists at least one accepting computational path i.e. a sequence of states r_0, r_1, \ldots, r_m and strings s_0, s_1, \ldots, s_m (denoting stack contents) such that:

1. $r_0 = q_0$ and $s_0 = \varepsilon$ (M starts in q_0 with empty stack)
2. $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$ (States follow transition rules)
3. $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma$ and $t \in \Gamma^*$
 (M pops “a” from top of stack and pushes “b” onto stack)
4. $r_m \in F$ (Last state in the sequence is an accept state)

On-Board Examples

- PDA for $L = \{w\#w^R | w \in \{0,1\}^*\}$ (# acts as a “delimiter”)
 - E.g. $0\#0$, $1\#1$, $10\#001$, $01\#10$, $1011\#1101 \in L$
 - L is a CFL (what is a CFG for it?)
 - Recognizing L using a PDA:
 - Push each symbol of w onto stack
 - On reaching # (middle of the input), pop the stack – this yields symbols in w^R – and compare to rest of input
- PDA for $L_1 = \{ww^R | w \in \{0,1\}^*\}$
 - Set of all even length palindromes over $\{0,1\}$
- Recognizing L_1 using a PDA:
 - Problem: Don’t know the middle of input string
 - Solution: Use nondeterminism (ε-transition) to guess!