Beyond the Regular world…

✦ Are there languages that are *not* regular?

✦ **Idea:** If a language violates a property obeyed by all regular languages, it cannot be regular!

✦ **Pumping Lemma** for showing *non-regularity* of languages

The Pumping Lemma for Regular Languages

✦ **What is it?**

 ✦ A statement ("lemma") that is true for all regular languages

✦ **Why is it useful?**

 ✦ Can be used to show that certain languages are *not regular*

 ✦ **How?** *By contradiction:* Assume the given language is regular and show that it does not satisfy the pumping lemma
More about the Pumping Lemma

- **What is the idea behind it?**
 - Any regular language L has a DFA M that recognizes it
 - If M has p states and accepts a string of length $\geq p$, the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
 - *All strings* that make M go through this cycle 0 or any number of times are also accepted by M and *should be in* L.

Formal Statement of the Pumping Lemma

- **Pumping Lemma:** If L is regular, then $\exists p$ such that $\forall s \in L$ with $|s| \geq p$, $\exists x, y, z$ with $s = xyz$ and:
 1. $xyz \in L \forall i \geq 0$, and
 2. $|y| \geq 1$, and
 3. $|xy| \leq p$.
- Proof on board…(see also page 79 in textbook)
- Proved in 1961 by Bar-Hillel, Peries and Shamir
Pumping Lemma in Plain English

- Let L be a regular language and let $p = \text{“pumping length”} = \text{no. of states of a DFA accepting } L$
- Then, any string s in L of length $\geq p$ can be expressed as $s = xyz$ where:
 - y is not empty (y is the cycle)
 - $|xy| \leq p$ (cycle occurs within p state transitions), and
 - any "pumped" string xy^iz is also in L for all $i \geq 0$ (go through the cycle 0 or more times)

Using The Pumping Lemma

- **In-Class Examples:** Using the pumping lemma to show a language L is *not* regular
 - 5 steps for a proof by contradiction:
 1. Assume L is regular.
 2. Let p be the pumping length given by the pumping lemma.
 3. Choose cleverly an s in L of length at least p, such that
 4. For *all ways* of decomposing s into xyz, where $|xy| \leq p$ and y is not null,
 5. There is an $i \geq 0$ such that xy^iz is not in L.
Proving Non-Regularity using the Pumping Lemma

✦ Examples: Show the following are not regular
 - $L_1 = \{0^n1^n \mid n \geq 0\}$ over the alphabet $\{0, 1\}$
 - $L_2 = \{w \mid w$ contains equal number of 0s and 1s$\}$ over the alphabet $\{0, 1\}$

✦ Try these at home:
 - $L_3 = \{0^n1^m \mid n > m\}$ over the alphabet $\{0, 1\}$
 - $ADD = \{x=y+z \mid x, y, z$ are binary numbers and x is the sum of y and $z\}$ over the alphabet $\{0, 1, \ =, +\}$
 - $PRIMES = \{0^p \mid p$ is prime$\}$ over the alphabet $\{0\}$