Undecidable Languages

✦ **The Question:** Are there languages that are not decidable by any Turing machine (TM)?
 ➔ i.e. Are there problems that cannot be solved by any algorithm?

✦ Consider the language:
 \[A_{TM} = \{ <M,w> \mid M \text{ is a TM and } M \text{ accepts } w \} \]
 ➔ NOTE: \(<A,B,…>\) is just a string encoding the objects \(A, B, \ldots\)
 ➔ In particular, \(<M,w>\) is a string listing all the components of TM \(M\) (separated by #, for example) followed by the string \(w\)
 ➔ Given input \(<M,w>\), it should be easy to extract the info about \(M\) and to simulate \(M\) on \(w\) (try writing a TM to do this!)

✦ What can we say about \(A_{TM}\)?

\[A_{TM} \text{ is Turing-recognizable} \]

✦ \(A_{TM}\) is Turing-recognizable: Recognizer TM \(U\) for \(A_{TM}\):

- On input string \(<M,w>\):
 - Simulate \(M\) on \(w\).
 - ACCEPT \(<M,w>\) if \(M\) halts & accepts \(w\); REJECT \(<M,w>\) if \(M\) halts & rejects (Loop (& thus reject \(<M,w>\)) if \(M\) ends up looping).
- \(U\) accepts \(<M,w>\) iff \(M\) accepts \(w\), i.e. \(L(U) = A_{TM}\)

Yeah, but is it decidable?!!
Is A_{TM} decidable?

✦ No! $A_{TM} = \{ <M,w> \mid M$ is a TM and M accepts $w \}$ is
undecidable! 1-slide Proof (by Contradiction):
1. Assume A_{TM} is decidable \Rightarrow there’s a decider H, $L(H) = A_{TM}$
2. H on $<M,w> = ACC$ if M accepts w
 \quad REJ if M rejects w (halts in q_{REJ} or loops on w)
3. Construct new TM D: On input $<M>$:
 Simulate H on $<M,<M>>$ (here, $w = <M>$)
 If H accepts, then REJ input $<M>
 If H rejects, then ACC input $<M>
4. What happens when D gets $<D>$ as input?
 D rejects $<D>$ if H accepts $<D,<D>>$ if D accepts $<D>$
 D accepts $<D>$ if H rejects $<D,<D>>$ if D rejects $<D>$
 Either way: Contradiction! D cannot exist $\Rightarrow H$ cannot exist
Therefore, A_{TM} is not a decidable language.

Undecidability Proof uses Diagonalization

Input strings

<table>
<thead>
<tr>
<th>List of TMs</th>
<th>Input strings</th>
<th>If H exists</th>
<th>D outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>$<M_1>$</td>
<td>M_1</td>
<td>$<M_1>$</td>
</tr>
<tr>
<td>M_2</td>
<td>$<M_2>$</td>
<td>M_2</td>
<td>$<M_2>$</td>
</tr>
<tr>
<td>M_3</td>
<td>$<M_3>$</td>
<td>M_3</td>
<td>$<M_3>$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

D on $<M_i>$ accepts if and only if M_i on $<M_i>$ rejects.
So, D on $<D>$ will accept if and only if D on $<D>$ rejects!
A contradiction $\Rightarrow H$ cannot exist!
Therefore, A_{TM} is not a decidable language.
One Last Concept: Reducibility

- How do we show a new problem B is undecidable?
 - Idea: Show that A_{TM} is reducible to the new problem B
 - What does this mean and how do we show this?
 - Show that if B was decidable, then you can use the decider for B as a subroutine to decide A_{TM}
 - Contradiction, therefore B must also be undecidable

The Halting Problem is Undecidable (Turing, 1936)

- Example: Halting Problem: Does TM M halt on input w?
 - Equivalent language: $A_H = \{ <M, w> \mid TM \text{ M halts on input } w \}$
 - Need to show A_H is undecidable
 - We know $A_{TM} = \{ <M, w> \mid TM \text{ M accepts w} \}$ is undecidable
- Show A_{TM} is reducible to A_H (Theorem 5.1 in text)
 - Suppose A_H is decidable ⇒ there’s a decider M_H for A_H
 - Then, we can construct a decider D_{TM} for A_{TM}:
 - On input $<M, w>$, run M_H on $<M, w>$.
 - If M_H rejects, then REJ (this takes care of M looping on w)
 - If M_H accepts, then simulate M on w until M halts
 - If M accepts, then ACC input $<M, w>$; else REJ
 - $L(D_{TM}) = A_{TM} ⇒ A_{TM}$ is decidable! Contradiction ⇒ A_H is undecidable
- E.g. 2: Show $E_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable (see Theorem 5.2 in the text)