All solutions should be neatly written or type set. All major steps in proofs and algorithms must be justified.

1. (10 points) Design deterministic finite automata using a state transition diagram for each of the following languages.

 (a) \{ x \in \{0, 1\}^* : 010 is a substring of x \}.

 (b) \{ x \in \{0, 1\}^* : 111 is not a substring of x \}.

 (c) \{ x \in \{0, 1\}^* : x contains exactly 5 0’s \}.

 (d) \{ x \in \{0, 1\}^* : x has an even number of 0’s or an odd number of 1’s \}.

2. (10 points) Consider the languages

 \[L_k = \{ x \in \{0, 1\}^* : x \text{ contains exactly } k \text{ 0’s} \} \]

 for \(k \geq 0 \).

 (a) Formally define a deterministic finite automaton \(M_k \) with exactly \(k + 2 \) states that accepts \(L_k \).

 (b) Prove by contradiction that every deterministic finite automaton that accepts \(L_k \) has at least \(k + 2 \) states. The ideas from problem 2 of assignment 1 are useful.

3. (10 points) A finite state transducer \(M = (Q, \Sigma, \Gamma, \delta, q_0) \) is defined by: \(Q \) is a finite set of states, \(\Sigma \) and \(\Gamma \) are alphabets and \(\delta : Q \times \Sigma \rightarrow Q \times \Gamma^* \). That is, \(\delta(q, \sigma) = (p, y) \) means that on input \(q \) processing \(\sigma \in \Sigma \), \(M \) goes to state \(p \) and outputs the string \(y \). Let \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \). We write \(p \xrightarrow{w,y} q \) if there are states \(r_0, \ldots, r_n \) and \(y_1, \ldots, y_n \in \Gamma^* \) such that:

 \[
 \begin{align*}
 y &= y_1 y_2 \cdots y_n, \\
 r_0 &= q, \\
 r_n &= p, \\
 (r_i, y_i) &= \delta(r_{i-1}, w_i), \ 1 \leq i \leq n.
 \end{align*}
 \]

 For \(x \in \Sigma^* \), define \(f_M(x) = y \) if \(q_0 \xrightarrow{x,y} p \) for some \(p \in Q \). The string \(f_M(x) \) is called the output of \(M \) on input \(x \).
Design a finite state transducer that outputs the quotient in binary of a number written in binary divided by 3. For example, the quotient of 11 divided by 3 is 01 because 11 is 3 written in binary. Another example is the quotient of 1101 divided by 3 is 0100 because 1101 is 13 written binary and 0100 is 4 written in binary.