1. Lewis and Papadimitriou, Problem 3.6.2.

2. Consider Lemma 3.7.1 on page 170 of Lewis and Papadimitriou which gives a bottom-up way of converting grammars into PDAs. Fill in the details of the formal inductive proof of the Claim in that Lemma, namely the statement: “For any \(x \in \Sigma^* \) and \(\gamma \in \Gamma^* \), \((p, x, \gamma) \vdash_M^* \) \((p, \epsilon, S) \) if and only if \(S \Rightarrow_G^* \gamma R x. \)”

3. Show that recursively enumerable (i.e. Turing-recognizable) languages are closed under union, intersection, and concatenation.

4. Give an informal English description of a Turing machine that can decide membership in the language \(MUL = \{a^mb^n c^m | m, n \geq 1\} \). (Note that your Turing machine should be a decider, i.e., halt on all inputs.)

5. Let a \(k \)-PDA be a pushdown automaton that has \(k \) stacks. Thus a 0-PDA is an NFA and a 1-PDA is a conventional PDA. Since there are CFLs that are not regular, you already know that 1-PDAs are more powerful than 0-PDAs. Show that 2-PDAs are more powerful than 1-PDAs. (Hint: Argue how a 2-PDA can simulate a Turing machine.)

6. * (Extra credit) Assume that the language \(A_{TM} = \{\langle M, w \rangle | M \text{ is a TM that accepts } w \} \) is undecidable. Then, show that \(ALL_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \Sigma^* \} \) is undecidable.