CSE 322: Formal Methods in Computer Science

PROBLEM SET 3 Due Friday, April 25, 2003, in class

- 1. Apply the state elimination procedure described in class to convert the finite automata (c) from Problem 2.3.7 on Page 84 of Lewis and Papadimiriou into a regular expression. Simplify the resulting regular expression as much as you can.
- 2. Write down regular expressions for each of the following languages over the alphabet $\{0, 1\}$.
 - (a) $L_1 = \{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length}\}.$
 - (b) $L_2 = \{w \mid w \text{ is any string except } 00 \text{ or } 000\}.$
 - (c) $L_3 = \{ w \mid w \text{ does not contain the substring 110} \}.$
- Lewis and Papadimitriou, Problem 1.8.4.
 (You must give a regular expressions based proof to receive credit, i.e., do not resort to a DFA/NFA construction to prove regularity of L'.)
- 4. Let r and s be regular expressions where the language represented by r does not contain the empty string ϵ . Consider the equation $X = r \circ X \cup s$ (where \circ stands for concatentation of regular expressions, and \cup for union) with unknown variable X. Find a solution (namely, a regular expression) for X that satisfies the above equation and prove that this solution is unique. (Comment: This question is harder than the others!)
- 5. (a) By first constructing an NFA and then adding the necessary backward transitions, construct the DFA useful for determining whether the pattern *aababaabaaa* occurs in a string over the alphabet $\{a, b\}$.
 - (b) Lewis and Papadimitriou, Problem 2.6.3, Part (c).
 - (c) (Just for fun; no need to turn anything in for this part) Think about why such an NFA as in (b) above is good to have; this is actually Part (d) of Problem 2.6.3. (Again, you don't have to turn in a solution to this part.)