Simulating Nondeterministic TMs

- **Nondeterministic TMs (NTMs)**
 - $$\delta : Q \times \Gamma \rightarrow \text{Pow}(Q \times \Gamma \times \{L,R\})$$
 - No $$\varepsilon$$ transitions but can simulate them by reading and writing same symbol and moving head back to same position
- Any nondeterministic TM N can be simulated by a deterministic TM M
- N accepts w iff there is at least 1 path in N’s tree for w ending in $$q_{\text{ACC}}$$
 - Proof idea: Use breadth-first search to simulate each branch
 - Explore all branches at depth $$n$$ before $$n+1$$

Simulating Nondeterminism: Details, Details

- Use a 3-tape DTM M for breadth-first traversal of N’s tree on w:
 - Tape 1 keeps the input string w
 - Tape 2 stores N’s tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
 - Tape 3 stores current path number
 - E.g. $$\varepsilon$$ = root node $$q_0$$
 - 213 = path made up of 3rd child of 1st child of 2nd child of root
- See text for more details
Closure Properties of Decidable Languages

- Decidable languages are closed under \cup, \circ, \ast, \cap, and complement
- Example: Closure under \cup
- Need to show that union of 2 decidable L’s is also decidable
 Let M1 be a decider for L1 and M2 a decider for L2
 A decider M for $L_1 \cup L_2$:
 On input w:
 1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
 2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.
 M accepts w iff M1 accepts w OR M2 accepts w
 i.e. $L(M) = L_1 \cup L_2$

Closure Properties

- Consider the proof for closure under \cup
 A decider M for $L_1 \cup L_2$:
 On input w:
 1. Simulate M1 on w. If M1 accepts, then ACCEPT w. Otherwise, go to step 2 (because M1 has halted and rejected w)
 2. Simulate M2 on w. If M2 accepts, ACCEPT w else REJECT w.
 M accepts w iff M1 accepts w OR M2 accepts w
 i.e. $L(M) = L_1 \cup L_2$

Will this proof work for showing Turing-recognizable languages are closed under \cup? Why/Why not?
Closure for Recognizable Languages

- Turing-Recognizable languages are closed under \cup, \circ, \ast, and \cap (but not complement! We will see this later in Chapter 4)
- Example: Closure under \cap
 Let M_1 be a TM for L_1 and M_2 a TM for L_2 (both may loop)
 A TM M for $L_1 \cap L_2$:
 On input w:
 1. Simulate M_1 on w. If M_1 halts and accepts w, go to step 2. If M_1 halts and rejects w, then REJECT w. (If M_1 loops, then M will also loop and thus reject w)
 2. Simulate M_2 on w. If M_2 halts and accepts, ACCEPT w. If M_2 halts and rejects, then REJECT w. (If M_2 loops, then M will also loop and thus reject w)
 M accepts w iff M_1 accepts w AND M_2 accepts w i.e. $L(M) = L_1 \cap L_2$