Turing Machines Review

- An example of a decidable language that is not a CFL
 - Implementation-level description of a TM
 - State diagram of TM

- Varieties of TMs
 - Multi-Tape TMs
 - Nondeterministic TMs
 - String Enumerators

- Church-Turing Thesis:
 "Algorithm" ≡ Turing Machine

Turing Machines

Just like a DFA except:
- You have an infinite “tape” memory (or scratchpad) on which you receive your input and on which you can do your calculations
- You can read one symbol at a time from a cell on the tape, write one symbol, then move the read/write pointer (head) left (L) or right (R)
Who’s Turing?

- Alan Turing (1912-1954): one of the most brilliant mathematicians of the 20th century (one of the “founding fathers” of computing)
- Click on “Theory Hall of Fame” link on class web under “Lectures”
- Introduced the Turing machine as a formal model of what it means to compute and solve a problem (i.e. an “algorithm”)

How do Turing Machines compute?

- \(\delta(\text{current state, symbol under the head}) = (\text{next state, symbol to write over current symbol, direction of head movement}) \)

\[
\begin{array}{c}
\text{Machine State} \\
q_0 \\
qu_{\text{acc}} \\
q_{\text{rej}} \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c}
\text{Infinite Tape} \\
11010 \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c}
\text{Read/Write Head} \\
\rightarrow \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c}
\text{Machine State} \\
q_0 \\
qu_{\text{acc}} \\
q_{\text{rej}} \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c}
\text{Infinite Tape} \\
11000 \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c}
\text{Read/Write Head} \\
\rightarrow \\
\end{array}
\]

- Diagram shows: \(\delta(q_1,1) = (q_{\text{rej}},0, \text{L}) \) (R = right, L = left)
- In terms of “Configurations”: \(110q_110 \Rightarrow 11q_{\text{rej}}000 \)
Solving Problems with Turing Machines

- We know \(L = \{0^n1^n0^n \mid n \geq 0\} \) is not a CFL (pumping lemma)
- Show \(L \) is decidable
 - Construct a decider \(M \) such that \(L(M) = L \)
 - A decider is a TM that always halts (in \(q_{\text{acc}} \) or \(q_{\text{ rej}} \)) and is

 guaranteed not to go into an infinite loop for any input

Idea for a Decider for \(\{0^n1^n0^n \mid n \geq 0\} \)

- **General Idea:** Match each 0 with a 1 and a 0 following the 1.
- **Implementation Level Description** of a Decider for \(L \):

 On input \(w \):
 1. If first symbol = blank, ACCEPT
 2. If first symbol = 1, REJECT
 3. If first symbol = 0, Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write \(X \) over 1. Skip 1’s/X’s until you see 0. REJECT if blank.
 c. Write \(X \) over 0. Move back to left end of tape.
 4. At left end: Skip X’s until:
 a. You see 0: Write \(X \) over 0 and \textit{GOTO 3a}
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT
Try running the decider on:
- 010, 001100, ... → ACCEPT
- 0, 000, 0100, ... → REJECT
- What about 010010?

Houston, we have a problem with our Turing machine…
What’s the problem?

The decider accepts incorrect strings:

- 010010, 010001100 → ACCEPT!!
- Accepts \((0^n1^n0^n)^*\)

Need to fix it…

An Aside: Dijsktra on GOTOs

“For a number of years I have been familiar with the observation that the quality of programmers is a decreasing function of the density of go to statements in the programs they produce.”

A Simple Fix (to the Decider)

- Scan initially to make sure string is of the form 0*1*0*
- On input w:
 1. If first symbol = blank, ACCEPT
 2. If first symbol = 1, REJECT
 3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,
 Write a blank to mark left end of tape
 a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.
 b. Write X over 1. Skip 1's/X's until you see 0. REJECT if blank.
 c. Write X over 0. Move back to left end of tape.
 4. At left end: Skip X’s until:
 a. You see 0: Write X over 0 and GOTO 3a
 b. You see 1: REJECT
 c. You see a blank space: ACCEPT

The Decider TM for L in all its glory
Various Types of TMs

- **Multi-Tape TMs**: TM with k tapes and k heads
 \[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]
 \[\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, L, R, \ldots, L) \]

- **Nondeterministic TMs (NTMs)**
 \[\delta : Q \times \Gamma \rightarrow \text{Pow}(Q \times \Gamma \times \{L,R\}) \]
 \[\delta(q_i, a) = \{(q_1, b, R), (q_2, c, L), \ldots, (q_m, d, R)\} \]

- **Enumerater TM for L**: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L

- Other types: TM with Two-way infinite tape, TM with multiple heads on a single tape, 2D infinite tape TM, Random Access Memory (RAM) TM, etc.
Surprise!
All TMs are born equal…

- Each of the preceding TMs is equivalent to the standard TM
 - They recognize the same set of languages (the Turing-recognizable languages)
- Proof idea: Simulate the “deviant” TM using a standard TM
- **Example 1: Multi-tape TM on a standard TM**
 - Represent k tapes sequentially on 1 tape using separators #
 - Use new symbol a to denote a head currently on symbol a

 $$
 \begin{array}{l}
 0 1 \ldots \ldots .\\
 b a h \ldots \ldots .\\
 3 2 2 \ldots \ldots .
 \end{array}
 \equiv
 \begin{array}{l}
 \# 0 1 \# b a h \# 3 2 2 \# \ldots .\
 \end{array}
 $$
 (See text for details)

Example 2: Simulating Nondeterminism

- Any nondeterministic TM N can be simulated by a deterministic TM M
- N accepts w iff there is at least 1 path in N’s tree for w ending in q_{ACC}
- **General proof idea:** Simulate each branch sequentially
- **Proof idea 1:** Use depth first search?
 - No, might go deep into an infinite branch and never explore other branches!
- **Proof idea 2:** Use breadth first search
 - Explore all branches at depth n before $n+1$

 ![Diagram](image_url)
 This branch does not halt

R. Rao, CSE 322
Simulating Nondeterminism: Details, Details

- Use a 3-tape DTM M for breadth-first traversal of N’s tree on w:
 - Tape 1 keeps the input string w
 - Tape 2 stores N’s tape during simulation along 1 path (given by tape 3) up to a particular depth, starting with w
 - Tape 3 stores current path number
 E.g. $\varepsilon = \text{root node } q_0$
 $213 = \text{path made up of 3rd child of 1st child of 2nd child of root}$
- See text for more details

The Church-Turing Thesis

- Various definitions of “algorithms” were shown to be equivalent in the 1930s
- **Church-Turing Thesis**: “The intuitive notion of algorithms equals Turing machine algorithms”
 - Turing machines serve as a precise formal model for the intuitive notion of an algorithm
- “Any computation on a digital computer is equivalent to computation in a Turing machine”

Dude, that’s pretty deep…
Next Class: We’ll ‘rap up Chapta 3.
Now: Ya CSE homiez fill out da student evals

Look, Ma, I’m on CSE 322!

Have a great weekend!

That guy needs help…