The Pumping Lemma for Regular Languages

♦ What is the idea behind it?
 ♦ Any regular language L has a DFA M that recognizes it
 ♦ If M has p states and accepts a string of length $\geq p$, the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
 ♦ All strings that make M go through this cycle 0 or any number of times are also accepted by M and should be in L.

Formal Statement of the Pumping Lemma

♦ Pumping Lemma: If L is a regular language, then there exists a number p (the “pumping length”) such that for all strings s in L such that $|s| \geq p$, there exist x, y, and z such that $s = xyz$ and:
 1. $xyz \in L$ for all $i \geq 0$, and
 2. $|y| \geq 1$, and
 3. $|xy| \leq p$.

♦ On board proof…(see page 79 in textbook)
Pumping Lemma in Plain English

- $p =$ number of states of a DFA accepting L.
- Any string s in L of length $\geq p$ can be expressed as $s = xyz$ where y is not null (y is the cycle), $|xy| \leq p$ (cycle occurs within p state transitions), and any “pumped” string xy^iz is in L for all $i \geq 0$ (go through the cycle 0 or more times).

Using The Pumping Lemma

- **In-Class Examples:** Using the pumping lemma to show a language L is not regular
 - 5 steps for a proof by contradiction:
 1. Assume L is regular.
 2. Let p be the pumping length given by the pumping lemma.
 3. Choose cleverly an s in L of length at least p, such that
 4. For any way of decomposing s into xyz, where $|xy| \leq p$ and y isn't null,
 5. You can find an $i \geq 0$ such that xy^iz is not in L.

- **Example 1:** $\{0^n1^n \mid n \geq 0\}$
Proving non-regularity as a Two-Person game

- An alternate view of using the pumping lemma to show a language L is not regular
 - Think of it as a game between you and an opponent (KB):
 1. **You**: Assume L is regular
 2. **KB**: Chooses some value p
 3. **You**: Choose cleverly an s in L of length $\geq p$
 4. **KB**: Breaks s down into some xyz, where $|xy| \leq p$ and y is not null,
 5. **You**: Need to choose an $i \geq 0$ such that xy^iz is not in L (in order to win (the prize of non-regularity)!).

- See how this works for showing $\{0^n1^m \mid n > m\}$ is not regular.
- Another example: Show $ADD = \{x=y+z \mid x, y, z$ are binary numbers and x is the sum of y and $z\}$ is not regular

Da Pumpin’ Lemma
(Lyrics: Harry Mairson)

Any regular language L has a magic number p
And any long-enough word s in L has the following property:
Amongst its first p symbols is a segment you can find
Whose repetition or omission leaves s amongst its kind.

So if you find a language L which fails this acid test,
And some long word you pump becomes distinct from all the rest,
By contradiction you have shown that language L is not
A regular guy, resilient to the damage you have wrought.

But if, upon the other hand, s stays within its L,
Then either L is regular, or else you chose not well.
For s is xyz, and y cannot be null,
And y must come before p symbols have been read in full.

Source: http://www.cs.brandeis.edu/~mairson/poems/node1.html
If \(\{0^n1^n \mid n \geq 0\} \) is not Regular, what is it?

Irregular??

Enter…the world of Grammars