CSE 322: Regular Expressions and Finite Automata II

Question from Last Time: Are regular expressions and NFAs/DFAs equivalent?

We showed:
- \(R \rightarrow NFA \): We can convert any reg. exp. \(R \) into an equivalent NFA \(N \) such that \(L(R) = L(N) \)
- How about showing the converse?
 - \(NFA \rightarrow R \)? Given an NFA \(N \) (or its equivalent DFA \(M \)), is there a reg. exp. \(R \) such that \(L(M) = L(R) \)?

From DFAs to Regular Expressions

Steps for extracting regular expressions from DFAs:
1. Add **new start state** connected to old one via an \(\varepsilon \)-transition
2. Add **new accept state** receiving \(\varepsilon \)-transitions from all old ones
3. Keep applying 2 rules until only start and accept states remain:
 1. **Collapse Parallel Edges:**
 2. **Remove “loopy” states:**

 (Example DFA: \(\{ w \mid \# 0’s \text{ in } w \text{ is not divisible by } 3 \} \) on the board)
Regular expressions, NFAs, and DFAs are all equivalent!!!

Beyond the Regular world…

- Are there languages that are *not* regular?

- **Idea:** If a language violates a property obeyed by all regular languages, it cannot be regular!
 - **Pumping Lemma** for showing *non-regularity* of languages

But I’m just regular guy…
The Pumping Lemma for Regular Languages

✦ What is it?
 ➔ A statement (“lemma”) that is true for all regular languages

✦ Why is it useful?
 ➔ Can be used to show that certain languages are not regular
 ➔ How? By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma

The Pumping Lemma for Regular Languages

✦ What is the idea behind it?
 ➔ Any regular language L has a DFA M that recognizes it
 ➔ If M has p states and accepts a string of length $\geq p$, the sequence of states M goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
 ➔ All strings that make M go through this cycle 0 or any number of times are also accepted by M and should be in L.
Formal Statement of the Pumping Lemma

- **Pumping Lemma**: If L is a regular language, then there exists a number p (the “pumping length”) such that for all strings s in L such that $|s| \geq p$, there exist x, y, and z such that $s = xyz$ and:
 1. $xyz \in L$ for all $i \geq 0$, and
 2. $|y| \geq 1$, and
 3. $|xy| \leq p$.

- **More Plainly**: $p = \text{number of states of a DFA accepting } L$. Any string s in L of length $\geq p$ can be expressed as $s = xyz$ where y is not null (y is the cycle), $|xy| \leq p$ (cycle occurs within p state transitions), and any “pumped” string xy^iz is in L for all $i \geq 0$ (go through the cycle 0 or more times).

- Proved in 1961 by Bar-Hillel, Peries and Shamir.

The Pumping Lemma

- **Proof on the board**...(see page 79 in textbook)
 - See how it applies to $\{w \mid \# 0's \text{ in } w \text{ is not divisible by } 3\}$

- **In-Class Examples**: Using the pumping lemma to show a language L is not regular
 - **5 steps for a proof by contradiction**:
 1. Assume L is regular.
 2. Let p be the pumping length given by the pumping lemma.
 3. Choose cleverly an s in L of length at least p, such that
 4. For any way of decomposing s into xyz, where $|xy| \leq p$ and y isn't null,
 5. You can find an $i \geq 0$ such that xy^iz is not in L.

R. Rao, CSE 322
Weekend Exercise:

Try proving the following are not regular using the 5 steps in the previous slide:

\{0^n1^n \mid n \geq 0\}

\{0^n1^m \mid n > m\}

\{0^p \mid p \text{ is a prime number}\}

Next Class: More on being Non-Regular

- Things to do over the weekend:
 - Download homework # 4 from course website:
 - www.cs.washington.edu/education/courses/322/02au/assignments.html
 - Work on (and finish!) homework # 4 (due Friday, Nov 1)
 - Start reading Chapter 2 in the text
 - Have a great “pumping lemma” of a weekend!

Can I have my Oscar now?