Review of Chapters 0-1

- See Midterm Review Slides
 - Emphasis on:
 - Sets, strings, and languages
 - Operations on strings/languages (concat, *, union, etc)
 - Lexicographic ordering of strings
 - DFAs and NFAs: definitions and how they work
 - Regular languages and properties
 - Regular expressions and GNFAs (see lecture slides)
 - Pumping lemma for regular languages and showing nonregularity

Context-Free Grammars (CFGs)

- CFG $G = (V, \Sigma, R, S)$
 - Variables, Terminals, Rules, Start variable
 - uAv yields uwv if $A \rightarrow w$ is a rule in G: Written as $uAv \Rightarrow uwv$
 - $u \Rightarrow^* v$ if u yields v in 0, 1, or more steps
 - $L(G) = \{w \mid S \Rightarrow^* w\}$
 - CFGs for regular languages: Convert DFA to a CFG (Create variables for states and rules to simulate transitions)

- Ambiguity: Grammar G is ambiguous if G has two or more parse trees for some string w in $L(G)$
 - See lecture notes/text/homework for examples

- Closure properties of Context-Free languages
 - Closed under \cup, concat, * but not \cap or complementation.
 - See homework and lecture slides
Pushdown Automata (PDA)

- **PDA** $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$
 - Q = set of states
 - Σ = input alphabet
 - Γ = stack alphabet
 - q_0 = start state
 - $F \subseteq Q$ = set of accept states
 - Transition function $\delta: Q \times \Sigma \times \Gamma \rightarrow \text{Pow}(Q \times \Gamma)$
 - (current state, next input symbol, popped symbol) \rightarrow
 - {set of (next state, pushed symbol)}
 - Input/popped/pushed symbol can be ε

- Example PDAs for:
 - $\{w#w^R | w \in \{0,1\}^*\}$, $\{ww^R | w \in \{0,1\}^*\}$, Palindromes

Context-Free Languages: Main Results

- CFGs and PDAs are equivalent in computational power
 - Generate/recognize the same class of languages (CFLs)
 - 1. If $L = L(G)$ for some CFG G, then $L = L(M)$ for some PDA M
 - Know how to convert a given CFG to a PDA
 - 2. If $L = L(M)$ for some PDA M, then $L = L(G)$ for some CFG G
 - Be familiar with the construction – no need to memorize the induction proof

- Pumping Lemma for CFLs
 - Know the exact statement: $L \text{ CFL} \Rightarrow \exists p \text{ s.t. } \forall s \text{ in } L \text{ s.t. } |s| \geq p,$
 $\exists u, v, x, y, \text{ and } z \text{ s.t. } s = uvxyz$ and:
 - 1. $uv^ixyz \in L \forall i \geq 0$, 2. $|vy| \geq 1$, and 3. $|xy| \leq p$.

- Using the PL to show languages are not CFLs
 - E.g. $\{0^n1^n0^n | n \geq 0\}$ and $\{0^n | n \text{ is a prime number}\}$
Turing Machines: Definition and Operation

- TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{ACC}, q_{REJ})$
 - Q = set of states
 - Σ = input alphabet not containing blank symbol “_”
 - Γ = tape alphabet containing blank “_”, all symbols in Σ, plus possible temporary variables such as X, Y, etc.
 - q_0 = start state
 - q_{ACC} = accept and halt state
 - q_{REJ} = reject and halt state
 - Transition function δ: $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

- δ(current state, symbol under the head) = (next state, symbol to write over current symbol, direction of head movement)

- Configurations of a TM, definition of language $L(M)$ of a TM M

Decidable versus Recognizable Languages

- A language is Turing-recognizable if there is a Turing machine M such that $L(M) = L$
 - For all strings in L, M halts in state q_{ACC}
 - For strings not in L, M may either halt in q_{REJ} or loop forever

- A language is decidable if there is a “decider” Turing machine M that halts on all inputs such that $L(M) = L$
 - For all strings in L, M halts in state q_{ACC}
 - For all strings not in L, M halts in state q_{REJ}

- Showing a language is decidable by construction:
 - Implementation level description of deciders
 - E.g. $\{0^n1^n0^n \mid n \geq 0\}$, $\{0^n \mid n = m^2 \text{ for some integer } m\}$, see text
Equivalence of TM Types & Church-Turing Thesis

- Varieties of TMs: Know the definition, operation, and idea behind proof of equivalence with standard TM
 - Multi-Tape TMs: TM with k tapes and k heads
 - Nondeterministic TMs (NTMs)
 - Decider if all branches halt on all inputs
 - Enumerator TM for L: Prints all strings in L (in any order, possibly with repetitions) and only the strings in L

- Can use any of these variants for showing a language is Turing-recognizable or decidable

- Church-Turing Thesis: Any formal definition of “algorithms” or “programs” is equivalent to Turing machines

Decidable Problems

- Any problem can be cast as a language membership problem
 - Does DFA D accept input w? Equivalent to: Is \(<D,w> \) in \(A_{DFA} = \{ <D,w> \mid D \text{ is a DFA that accepts input } w \} \)?

- Decidable problems concerning languages and machines:
 - \(A_{DFA} \)
 - \(A_{NFA} = \{ <N,w> \mid N \text{ is a NFA that accepts input } w \} \)
 - \(A_{REX} = \{ <R,w> \mid R \text{ is a reg. exp. that generates string } w \} \)
 - \(A_{empty-DFA} = \{ <D> \mid D \text{ is a DFA and } L(D) = \emptyset \} \)
 - \(A_{Equal-DFA} = \{ <C,D> \mid C \text{ and } D \text{ are DFAs and } L(C) = L(D) \} \)
 - \(A_{CFG} = \{ <G,w> \mid G \text{ is a CFG that generates string } w \} \)
 - \(A_{empty-CFG} = \{ <G> \mid G \text{ is a CFG and } L(G) = \emptyset \} \)
Undecidability, Reducibility, Unrecognizability

- $A_{TM} = \{ <M,w> \mid M \text{ is a TM and } M \text{ accepts } w \}$ is Turing-recognizable but not decidable (Proof by diagonalization)

- To show a problem A is undecidable, reduce A_{TM} to A
 - Show that if A was decidable, then you can use the decider for A as a subroutine to decide A_{TM}
 - E.g. Halting problem = “Does a program halt for an input or go into an infinite loop?”
 - Can show that the Halting problem is undecidable by reducing A_{TM} to $A_H = \{ <M,w> \mid \text{TM } M \text{ halts on input } w \}$

- A is decidable iff A and \overline{A} are both Turing-recognizable
 - Corollary: \overline{A}_{TM} and \overline{A}_H are not Turing-recognizable